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CHAPTER 1. INTRODUCTION TO CALCULUS

11. SETS AND SET OPERATIONS

Def.: A setis a collection of objects which can be defined so that it is definitely
understood that any object is either in the set or not.

Examples of sets are:

1. A collection of numbers using for counting (the set of natural numbers).

2. The collection of solutions of the quadratic equation: x2-5x+6=0.
3. A collection of functions that are continuous on \a,b\.

A set is usually denoted by capital letters A,B,C, while the objects, which
compose the set, are denoted by small letters a,b,c.

Def.. The objects are called members or elements of a set.

Def. The set with no elements is called an empty set and is denoted by 0 .

Def. A set, which contains all the elements of other given sets, is called
a universal set. The symbol for denoting a universal setis U .

Graphical representation of sets

Mathematician John Venn has introduced the concept of graphical set
representation by means of closed geometrical figures, which
are called Venn diagrams. Venn diagrams are useful for
solving simple logical problems. In Venn diagrams, the
universal set U is represented by a rectangle and all other sets
are represented by circles within the rectangle.

Pic. 1.1 shows two sets A,B and three points a,b,c.
The point a is an element of the set B, b is an element of sets A
and B at the same time, point ¢ does not belong neither to A
nor to B.

It can be denoted as follows:

agA beA, beB C&A C<EB.

Set specification

There are two ways of set specification.

» One way consists in listing elements of a set. The correct representation of a
set is to write the elements, separated by commas and enclosed between braces or
curly brackets.

Example 1.1.

1 The set of natural numbers N can be defined by listing its elements:

N={123..}



2. A number set whose elements are values of terms of the arithmetic

progression with the initial term ¢, =1 and the common difference d = 3 Since the

nth term of an arithmetic progression a, =a, , +d =a, +(n—1)d, the desired number

set A= {1,3,2,..} )
2

e The second way of set specification consists in the definition of the rule or
property, which characterizes the set.
Example 1.2. Specify the collection of the quadratic equation solutions

x* —5x + 6 =0 using both ways.
0 Let 4 denote a set of the solutions of the equation x> —5x+6=0. Then
x,=2 and x, =3 are the desired roots.

Hence, according to the first way of specification 4= {2;3}.
The second way gives us A={x‘x2—5x+6=0} or A={x:x2—5x+6=0} N |
Remark 1.1
Note, the stroke | or colon : can be used interchangeably; they mean ‘such that’.
The representation A4 = {x ‘ ¥ =5x+6= O} i1s read as follows: A is a set of such

elements x, that x> —5x+6=0.
Def.: A set A 1s said to be a subset of a set B and denoted by Ac B if every

element of A is an element of B.
Def.: Sets A and B are said to be equal if and only if Ac B and Bc A.

Set operations

Def.: The union of two sets 4 and B (AU B) is a set of elements that belong to
Aor B: AuB={xxe 4 orxe B} . Below (pic. 1.2) the result of the union operation
is illustrated by use of Venn diagrams.

Pic. 1.2

Def.: The intersection of two A and B (AN B) is a set of elements that belong
toboth A and B: AnB={x:xe Aandxe B} .
In pic. 1.3 the result of the intersection operation is given.



ANB
Pic. 1.3

Example 1.3. Let A={1;2;3;4;5} and B={2;4,6;8;10}. Find AuBand
ANB.

nAuB={l;2;3;4,5,6; 8;10};AmB={2; 4}.-

Def.: The relative compliment of A in B (B\A or B—A) is a set of all
elements that don’t belong to 4 but belong to B:B\A={xxe B and x¢ A}
(pic. 1.4,a). _

Def.: The absolute compliment of A in U ( A) is a set of all elements that don’t
belong to A: A={x: x¢ A} (pic. 1.4, b).

| DN
| b

Pic. 14
Properties of set operations

1) Au B=Bu 4 (Commutative law),
ANnB=BNA,

2) Aud=A (Identity law),
ANU =4,

3) AuA=A (Idempotent law),
ANA=A,

4) AoU =U (Domination law)
ANG =0

5) AU(BUC)=(AuUB)uC , (Associative law),
AN(BNC)=(AnB)NC,

6) AU(BNC)=(4uB)n(4uC) , (Distributive law),
An(BuC)=(AnB)u(4AnC),

7) A = A, (Involution law),

8) AnB=4UB, (DeMorgan’s law),
AUB=4NB.



Def:: Sets A and B are disjoint sets, if they do not have common elements:
ANB=0.

Remark 1.2

If A and B are disjoint sets, then A\B=A4 and B\A=5B.

Example 1.4. Let 4={1;2;3;4;5} and B={2;4;6;8,10} .Find 4\ Band B\ 4.
0 According to the given definitions: A\ B={1;3;5}, B\A={6,8,10}.m
Example 1.5. Sets 4, B, C can be described as:
A= {x: x 1s a natural number between 1 and 5} ,
B={x:x is an even number between 1 and 5},
C ={x: x is an odd number between 1 and 5}.
Find AUB, BUC, AUBUC,AnB, BNC, AnC,A\B, B\C, C\A.
o According to the given descriptions:
Az{l; 2:3; 4, 5}, B={2; 4},C={l; 3; 5}

Hence, unions of sets:

AuBz{l; 2;3;4; 5}=A, BuC={l; 2;3; 4, 5}=A,

AUBUC={1,2,3;,4;,5}=4.

Intersections of sets:

ANB={2,4}=B, BNC=0, AnC={1;3,5}=C.
Compliments:

A\B={1;3,5}=C, B\C={24}=B, C\4=0.=

1.2. NUMBER SETS. COMPLEX NUMBERS
Number sets

The most important sets, which are considered in mathematics, are sets of
numbers or number sets:

1. The set of natural numbers (or natural numbers) N: N={1;2;...;n,...} .

2. The set of integer numbers (or integers) Z: Z={...,—1;0;1; 2;...;n,...}.

3. The set of rational numbers (or rational numbers) Q:

Qz{ﬂ:meZ, neN}.
n
4. The set of irrational numbers (or irrational numbers)I. The set I contains

. m .
numbers that can’t be expressed as a fraction —, where meZ, neN and their
n

decimal form involves an infinite sequence of numerals without repeating patterns.



For example, V2 =1.41421356237309504880168 . There is no repeating in
decimal places in comparison with, for example, the number

% =(0.33333333333333333333333.

5. The set of real numbers (or real numbers) R: R=QuI.

Some characteristics of number sets

Def.: A set AcR is said to be bounded from above if there exists a
number M € R such that a <M forallae 4,1.¢e.,
A 1s bounded from above< IM e R:Vae Aa<M.

The number M is called an upper bound of A.

Def.: A set A is said to be bounded from below if there exists a number m such
that a>mforallae A4, i.e.,

A is bounded from below < AmeR:Vae Aa>m.

The number m is called a lower bound of A.

Def.: A set A is said to be bounded if it is bounded both from above and below.

Note that the upper bound and the lower bound are not unique. Apparently, if
M 1is an upper bound, then values M +1, M + 2, and so on are also upper bounds.

Proposition 1.1.
A set A is bounded if and only if AM eR: |a|<M Vae A

Complex numbers

Suppose, it is needed to find roots of the equation: x* +1=0. Apparently it has
no real roots. However, to solve the problem we can introduce a new set C that may
be considered as an expansion of the real number set R. For this reason a new

element i € C such that ;> =—1 should be introduced. The element i is called the
imaginary unit. Thus the given equation has two roots: 7;—i.

Def.: A number z expressed in the form x+iy where x,yeR, i is the
imaginary unit is called a complex number. The form x+iy is referred to as the

algebraic form of the complex number z .
Def.: x is called the real part of z: x=Rez. yis called the imaginary part of

z: y=Imz.
Example 1.6. Find Rez, Imz, if a) z=1+i ;b) z=4;c) Z=—%.
oa)lf z=1+1i then Rez=1, Imz=1.
b) If z=4 then Rez=4, Imz=0.

c)If z=—é then Rez =0, ImZ:——;-.l

10



So to determine a complex numberz an ordered pair of real numbers (x,y)

should be taken. Furthermore as we know a geometric image of a real number is a
point on the real line. Then a geometric image of an ordered pair (x, y) is a point or

its radius vector on the coordinate plane (pic. 1.5).

A

3&
o

i—lk rannrnsny
v

Pic. 1.5

Def.: The coordinate plane where complex numbers are depicted is called the
complex plane. The x-axis is called the real line, the y-axis is called the imaginary

line.
Operations on complex numbers expressed in the algebraic form

Let z, =x, +iy, and z, = x, + iy, be two complex numbers. Then

l. zy=z, ifand only if x, =x,, y,=,.
It should be remembered that nevertheless examining two complex numbers
for equality can be possible comparison operation is inapplicable.

2.z=zxz,if z=x+iy, where x=x,tx,,y=y%Y,.

3.z=z-z,if z=x+iy, where x=x-x,—-y,-y,,y=XxY,+X,),.

4 z=2if z=x+Iiy, where x= al -x§+y12-y2 Y= yl-xg—xlz-yz :
Z) X, + ), X, ),
Def.: A complex number Z =x-iy is called a complex conjugate of
Z=X+1y.

Example 1.7.Find z + z,, z, - z,, z, - z,, ﬁ, if z =144, z,=1-2i.
2
O Operating with complex numbers can be carried out as with algebraic
expressions. z,+2z,=1+i+1-2i=(1+1)+i(1-2)=2-i. In like manner we have
z—z,=l+i—(1-2i)=3i.

Since i* =-1, z,-z, =(1+i)(1-2i)==1-2i* - 2i+i=3-i.

11



: .2 4 Z
To find the quotient — the formula — :;‘z r can be used. Note, that for any
Z2 Z2 2272

complex number z=x-iy the product zz results in x2+y2. Then,
4 ZH{z2 (1+2)(1+22) 1-2+2/+/ 13
9 7979 1+4 5 5 5

Example 1.8. Find (I +234-

n
O Using the Binomial formula in the form (x +iy)"“=" C fxn1(iy)1 where the

/o

binomial  coefficients Cl= n\__’ m=\-2-...-n, we have (1+24=
I\N(n-i)\

=C4+CY +CA2+&, +cyy . Since C§=Q~4j=l Cy=— =4, C2=9p =6

Cl=——=4,C4= 1 and 12=-1, B=/2=-z, A4=1, we get

31! 400
(I1+24=1+4z- 6- 4z+1=-4 m

A position of a point on the coordinate plane (pic. 1.6) can be determined not
only by an ordered pair (x,y) but the ordered pair (r,cp), where r is the distance

from the origin to the point (OA) and @ is the angle between OA and the positive
direction of the x -axis.

Def.. r is denoted by Iz and called the modules of a complex number z.

As shown in pic.1.6, r or OA is a hypotenuse of hAOB then r or |z| is n]x2+y2.

Angle @ can be found from the equation tan ob=i/(—.

However, the correspondence between points on the plane and pairs (r,g) is
: arA | ..
not a one-to-one correspondence. For example, the pairs I(l’zij and I(l’_4) define a

position of the same point.



To disambiguate this fact the range of ¢ should be restricted. Let ¢ vary from
~n to =. To find ¢ it is convenient to use the scheme (pic. 1.7):

n+tan' 2 tan™' 2
X X
(2
® 5 ¢ >
6 %
—m+tan ! 2 (4) tan™! 2
X X

(:0=0; (2:0=7: (B):0=m (4):0=-

Pic. 1.7
Def.: ¢ 1is called the principle value of the argument of z and denoted by
argz.

kil
2

All possible values Argz of the argument of zare given by
Argz=argz+2nk, ke .

Consider the problem of evaluating x and y in terms of »and¢. Concerning
the fact that the side OB being adjacent to £ AOB is xand the hypotenuse OA4 is r
we have x = OAcos(£AOB)=rcos. By analogy, y =0Asin(£AOB)=rsin¢
Then, any complex number z = x +iy can be represented in the form
z=x+iy=r(cos@+ising).

This form is called the trigonometric form of a complex number.

Example 1.9. Find modules and arguments of the given complex numbers. Plot
geometric images of the numbers, if
N

. . I
Zl:l+l’ZZ=4>Z3:_1+l> Z4=__> ZS=____

2 2
=x*+y”, where x=Rez,y=Imz.

Then for z, =1+i we get |z,|=+1% +1? =/2 . Using the scheme presented on pic. 1.7

(plztan‘11=arctan2=arctanl=§. In like manner, |22|=\/42+02=4,(p2=0;

X X
2
|z,| = (-1)" +1* =42, 0, :n+arctani1:%n; |z,|= "02 +(—%) =%,(p4 :—g;

13

0 By the definition of the modulus,|z




( 1V

=1,cp =-7i tarctan—4== " The Images are depicted in
v~2y V3

~6

pic. 1.8.n

Operations on complex numbers expressed in the trigonometric form

Let 4 ="(coscpj + Z'sincpj) and z2=r2(coscp2+ /sin(p2) be two complex

numbers represented in the trigonometric form.
Then
1 z=1z m2=/(coscpj + z'sincpj)-r2(coscp2+ zsincp2) =

=1, {(coscpj cos(p2- sin (@ sincp2) + /(sincpj coscp2 + sincp2coscp, )| =

=~{cos"j +qR) +/sin(cpj + qR)};

2. z=—=—{005(9!-cp2) +/sin(cpi-cp2)};
z2 12

3. z=z"=/;"{cos(/7*q )+ /sin(z7-q@)], ne N.
In the particular case, when x= 1, we have

{coscp) H-ish”™}” =|cos(« *(p,) +/sin(z7 «cpjj.
This formula is called by de Moivre'sformula.
+2nk2

AN
z=dzx=\ \ cos @ +2 +/sin «-1,weN .
[ n ) | n



3 ZT'

Example 1.10. Find | — +—
2 2

0 To raise the complex number 2+i to 5 it is needed to represent it in the

3

trigonometric form: - + é =1 (cos% +1i sin%), wherefrom r=1 ¢= % Then

7
Example 1.11. Find (1+ l')5 (\/5— l') .
0 The given expression can be considered as a product of two numbers
7
z,=(1+i) and z, = (\/5— l') . According to example 1.9,

1+i=2 cos£+isin£j; \/g—i=2 cos(—zjﬂ'sin(—zj .
4 4 6 6

4 =(1+ l')5 = 4ﬁ(cos%+ism%];zz =(\/§—l’)7 =

=128| cos _In +isin(—7—n) ,
6 6
n

wherefrom r, =4+/2, r, =128 However, it should be noticed that %[ and s can

Then

not be taken for the arguments ¢, and ¢,, because the argument of a complex

number ¢ varies from -m to wm. Thus, reduction formulas should be used:

5w 3n 5w
—=2n——and ——=-2n+— . Then, ¢, =—— and ¢, =—.
6 6 P=m M=y

7
In result, (1+i)5(\/§—i) =4\/5-128(005(%—%{)+isin(5—n—3—n)j:
=512\/§(cosl+l’sinl .m
12 12

Example 1.12. Solve the equation z° =1+
0 To find all roots of the given equation it is needed to calculate all values of

J1+i. For this reason the complex number 1+ should be represented in the

trigonometric form: 1+i= 2 (cos% +isin %) , Wherefrom r = 2 , p= % . Then,

15
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T ionk T oonk

\3/1+i=3(\/§) cOS 4T +isin| 4

1

k=0, z, —26(COS—+ISIH— ~1.084 +0.291i,
12 12

1

k=1, z,=2° (cosg—n+ isin2F |~ —0.794 + 0.794i,
12 12

k=2, 22—26(00517—Tt+lsin17—7c ~—-0.291-1.084i.
12 12

The obtained solutions are plotted in pic. 1.9.m

A

A 4

oz
Pic. 1.9
Exercises

1. Find ImZ, if z = —

1-2i

2—1 3
2. Find ReZ, if z= X
1+l

3. Find |Z1 “ 2|,

4. Find modulus and arguments of the complex numbers:
o oi [ o dE 4nj :(1+1)(J§_;),
! 7 7

5. Solve the equations: z°—1=0; 2 —i=0.
6. Depict the regions on the complex plane given by

) l=1: ) {H x o {gz

O=argz==: 7 |z<1.

argz,, Re(z,-z,), Im[?], if z=1+i""
2

,k=0,1,2

272 >

zZ,==2+2i.



1.3. CONCEPT OF A FUNCTION

Def.: A function f from aset X toaset) is a correspondence that assigns

to each element x of X a unique element y of Y. The element x is called an
independent variable or an argument. The element y is called a depended variable
or an image of x under / and denoted by f(x).

Def.: The set X is called the domain of the function f. The range of the
function f consists of all images of elements of X.

Remark 1.3

1. It is generally said that a function y= f(x) maps a set X into a set Y-
f:X—7Y Inthis case f is called a mapping of X into Y.

2. The symbol f(x) is used for the element associated with x, and it is read
“f of x”. Sometimes f(x) is called the value of f at x.

3. In particular, we may use any other letter instead of x as an argument of
f. For example, the functional correspondences: f(x)=x>, f(t)=¢* and
f(a)=0a’ are identical and defined the mapping f:R —R,, where R, is a set of
all nonnegative real numbers. Also, we may use any letter instead of f for function

denotation. The functions g(x)=x",u(t)=¢"and f(x)=x" are also identical.

Classification of functions
Functions listed below are called basic elementary functions:
e constant C' (pic.1.10, a),

e the power function x* (pic.1.10, b—c),

e the exponential a” (pic.1.10, d),
e the logarithm log_x (pic.1.10, e),

e the trigonometric functions: sin(x), cos(x), tan(x), cot(x) (pic.1.10, /g),
)

e the inverse trigonometric functions: arcsin(x) (sin™'(x)), arccos(x)
(cos™'(x)), arctan(x) (tan'(x)), arccot(x) (cot™ (x)) (pic.1.10, h-i).

17



arcsin x

arccos x

Pic. 1.10

Def.: An elementary function is a function that may be represented by a single
formula y=f(x), where f(x) involves only a finite number of arithmetic

operations (addition, subtraction, multiplication, division) on basic elementary
functions and expressions that are functions of functions called composite functions.
Examples of elementary functions:

e the hyperbolic functions:

the hyperbolic sine shx = e—T

the hyperbolic cosine chx =

18

-X

e

2

e*+e*

>

2



hx ex _ e—x

x 2

the hyperbolic tangent thx = 5
chx e*+e”

hx e"+e "
= x’

the hyperbolic cotangent cthx = ¢
shx e*—e”

e the rational functions:

the linear function y=ax+b,

the quadratic function y=ax® +bx +c,

the polynomial functions

P(x)=apx"+ax" " +. . +a, Q,(x)=b,x"+bx" "+ +b .
b, (x)
O (%)

the rational function R (x)=

Other examples of elementary functions:
1

y=sin(x2), y=x?+3x*, y=(x—1)ex,y=(1+x);.

Examples of non-elementary functions:

o l+x+x+.  +x" 4.

This formula contains an infinite number of arithmetic operations;

-1, x<0,
e y=<0, x=0,
I, x>0.

>

Inspite of the fact that the latter function called a piecewise function coincides
with basic elementary functions in separate parts of the domain, it is not an
elementary function in the entire domain.

Inverse functions

Consider the function y= f(x), where f(x)=2x-1. The graph of f is
illustrated below (pic. 1.11).

19



Pic. 1.11

As we see the considered function satisfies the condition: f(x)=f(x;)
implies x; = x,. Graphically it means that any horizontal line y=C intersects the
graph no more that at one point. Consequently the equation y= f (x) has no more
than one solution for each y. Solving y=f (x) for x we get the correspondence
x=g(y) that is called an inverse function. Also it can be possible another

denotation for the inverse function: x= f~'(y).

Composite functions (functions of a function)

Def.. Consider a function u= (p(x), which maps a set X onto a set U:
@:X—> U, and a function y= f(u), which maps a set U onto a set Y: f:U—7Y,
then the composite function y = f((p(x)) maps aset XontoasetY: fop: X—>7Y.

Remark 1.4
We read function notation (fo¢)(x) from right to left that means we should

calculate the value of ¢ at x first then substitute the result in f .

Example 1.13. Find composite functions fo¢ and ¢o f, if f(x)=3x"-4
and @(x)=vx-1.

o According to the definition (foo)(x)=f ((p(x)) while
(9 1)) 0( /() Thos,

Fo(x)=F(Va—1)=3(Va=1) ~4=3(x-1)-4=3x-7,if x-120

(p(f(x))=(p(3x2—4)=\/(3x2 —4)-1=\327 -5, if 37 =520 . m

Example 1.14. Represent the function y=+/x-1 as a composition of
elementary functions.

o Let ¢(x)=x-1, f(u)=\/;. Notice, ¢(x) and f(u) are elementary
functions. Then y=+/x—1 =f((p(x)) or y=(fo0o)(x).m
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The ways of functions representation

The following ways can be classified:

1) analytical representation,

2) table representation,

3) graphical representation,

4) representation by verbal description.

Analytical representation. The functions are represented analytically by means
of formulas:

e y= f(x) — this equation specifies an explicit function,
o I (x, y) =0 — this equation specifies an implicit function,
o x=¢(1), y=wy(t) — these equations specify a parametrically defined function.

Table representation of a function. Let {x,,x,,...x,} be a set of ordered

values of arguments, where x; <x, <...<Xx,, {3.¥,....),} — a set of corresponding
values of a function. The function can be represented by the table shown below:

Table 1.1

X | x [ X | x| x| | X,
N Vo Vs | Val- | Va

Graphical representation of a function. Consider a function f(x) defined as
fX->Ye f(x)=y.

Def.: The graph of the function f (x) is called a set of ordered pairs:
G= {(x y)eR*:xeX,y=f (x)} . A point on the xy-plane is assigned to an ordered
pair (x,y)eG .

Verbal description. Define a function f(x) as the integer part of a number x:
f (x) = [x] The largest integer that does not exceed x is called the integer part of the

number x (denoted by [x]). Thus, [1,2] = 1, [2] = 2, [-2,3] = —3. The function
f(x)=[x] is called the floor function. The domain is the set of real numbers R, the

range 1s the set of integer numbers Z .

Example 1.15 . The dependence between the temperature 77 and the time 7 1s

represented below by means of the table 1.2 and the graph (pic. 1.12).
Table 1.2

¢ 19:00[10:00 [ 11:00 | 12:00 | 13:00 | 14:00
T [21° [212° [21.5° [21,8° [ 22.8° [23,5°
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Graphing functions

To plot the graph it is useful to specify some properties ofafunction.
Def. The domain D (/) of a function /(x) is called a symmetric set if for

every xeD (/) there exists -x suchthat -x e D(f).
Def. The function / (x) is called even if f(~x) =f (x) for every xe D (f).
The function /(x) is called odd if /(-x) =-/(x) for every xe D (/) . The graph

of an even function is symmetric about the y -axis. The graph of an odd function is

symmetric with respect to the point O (the origin).
D ef: Aperiodic function is afunction that repeats its values in regular intervals
or periods. A function / is said to be periodic with period T (>0) if

[ (x-T)=./(x)=/(x +7) forany xe D(f) . The smallest positive constant T (if
it exists) is called a basic period.

Example 1.16 . Sketch the graph of the function /(x) =/1- x.

00 The function /(x) =V1- x is an explicit function. The domain /) (/) can
be defined by the inequality 1-—x>0, i.e. A /H x x<I} =(-ga, I]. Notice, that the
domain D(f) is not a symmetric set. Consequently, the function / is neither an
even nor an odd function. Also /(x) = - x is not a periodic function.

To sketch the graph we can use the table of graph transformations. Suppose,
the form of the graph of /(x) is known then to sketch the graph /(x +C), where

C >0, we should shift the graph of /(x) C units to the left.
There exist other transformations listed below (table 1.3).



Table 1.3

No Function Transformation
1 f(x+C) Shift the graph of f(x) C units to the left if C >0.
Shift the graph of f(x) C units to the right if C <0
2 f(x)+C Shift the graph of f(x) C unitsupif C >0,
Shift the graph of f(x) C units down if C <0,
3 f(Cx) Stretch the graph of £ (x) horizontally by C, if C <1.
Shrink the graph of f(x) horizontally by C, if C >1.
4 C f(x) Stretch the graph of f(x) vertically by C, if C >1.
Shrink the graph of f(x) vertically by C, if C <1,
- f(x) Reflect the graph of f(x) over the x-axis
f(=x) Reflect the graph of f(x) over the y-axis

Function /x can be taken as the original function whose graph is well known.
Write out the sequence of transformations:

NP iy

Above arrows number of transformation is marked. Steps of sketching the graph of
the given function are shown below (pic. 1.13). m

AFEIASS
Pic. 1.13

Example 1.17. Prove that the equation x* + y* =2x—4y determines a circle.

Find its radius and coordinates of the center. Sketch the circle.
0 A circle can be defined as the locus of all points that satisfy the equation:

(x=x) +(y=-3)" = R, where R (R=0) is the radius of the circle, and x,, y,
are the coordinates of its center. Rearranging terms and completing the square in the
equation x* +y* =2x -4y we have

x2+y2—2x+4y=O:(x2—2x+1)+(y2+4y+4)—5=0:(x—1)2+(y+2)2=5.
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Hence, x,=1, y, =—2,R=\/§ . Notice, that this equation specifies an implicit
function. m

Pic. 1.14

Graphs of functions represented parametrically

In some cases it 1S more convenient to represent a function by expressing x
and y scparately in terms of a third independent variable, which is called a

parameter: x=(t), y=wy(). In this case, any value of ¢ generates a pair of values
x and y , which is considered as a point of the curve.

Table 1.4

Y J/(to) J’(tl)

For example the circle with center at (1,2) and radius JJ5 can be described by
the following parametric equations:

x=1+\/§cost, y=—2+\/§sint,
where ¢ 1s a parameter, € (—oo; oo), Rewriting the equations in the form:

x-1 =\/§cost, y+2= Ssint , squaring them and summing them we will receive the
equation of the circle in xy-coordinates:

{x—] = \/gcost’ {(X—l)z = SCOSZI,
=<+

y+2 =/5sint (y+2)2 = 5sin’t

(x- 1)2 +(y+ 2)2 = 5(coszt+ sinzt) or

()c—1)2+(y+2)2 5.
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Example 1.18. Sketch the graph of a function x=——, y =——
1+1¢ 1+¢

0 Obviously D(x)=R, D(y)=R. Thus ¢ € (—o0;+w). The range of x(t) that
can be denoted by E(x)=R. Since y(¢)20 VieD( y) and

2
lim y(r)= lim

t—>+o0 toto ]| + ¢

=1, E(y)=[0.,1). Make a table:

2

Table 1.5
t | -2 | -1 0 1 2 3
8 1 1 8 27
x |2 |-=]0 | = | 2|
5 2 2 5 10
B ER
5 2 2 5 10

We plot each point (x(t), y(t)) and join them. The graph is represented below (pic.
1.15). m

) uouo
th oo'0

3 2.1 -1 05 [005 1 16 2 273

Pic. 1.15

Graphs of functions represented in polar coordinates

Let a point O be the pole, a horizontal half-line Ox — the polar axis.
Then r» and ¢ are polar coordinates of an arbitrary point A on the plane

(pic. 1.16). The polar radius r is equal to the distance between A and the pole (the
length of the segment OM ), r 20. The polar angle ¢ is the angle between segment

OM and the polar axis. The angle ¢ is measured counterclockwise, pe R .

Let the origin of Cartesian coordinates system coincides with the pole and the
positive direction of the x-axis coincides with the polar axis.
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M(r,0)

\ 4

Pic. 1.16

Then the relationship between rectangular and polar coordinates of A can be
expressed by the following formulas:

X =rcosp, y=rsing;

and vice versa:

a:rctanl,y >0, x>0,

X

n+arctan1,y20, x<0,
X

r=~/x2+y2, Q= —7c+a:rctan%,y<0,x<0,

a:rctanl,y <0, x>0,
X

Lg-sign(y), x=0.

The equation 7=r(¢), ¢ €[a;b] is called the polar equation of a curve.
The curve exists for all @: r(¢)=0.

Example 1.19. Sketch the graph of function r=a (1 + COS(p) a>0.

0 Since —1<cos@ <1, r>0 for all peR. The function = a(l +COS(|)) 1S a
periodic function with the period 7 =2n. Consequently the domain of
r=a(l+cosp) is D(r)={¢:—n+2nk<o<n+2nk,keZ}, the range Iis
E(r)=[0;2a] 1t can be easy to verify that r(—¢)=r(¢). Indeed,
r(—p)=a(1+cos(-¢))=a(l+cose)=r(p).

It means that the curve is symmetric about the polar axis (pic. 1.17). Taking
into account the fact of symmetry of the graph and periodicity we make the table for

pe[0;x].
ot

0 )-(P ;

F(—¢

Pic. 1.17.
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(0} 0 n il 3T 1

r 2a a(l1+4)»1, 4 a(\-*pjn0,3a 0

This curve is called the cardioid.
Example 1.20. Sketch the graph of the function r = sin2cp.

O The function sin2cp is a periodic function with the period T=gn =tz. The

given function is defined for cpeM: sin2cp>0. So the domain of sin2cp is

D(r) ={op 2izk<2p<n +2nk, ke Z} or D(r) =jcp:mr<gp<”™ +nK, Kez j.

That means the curve is located on the first and the third coordinate quarters and has

N
two identical parts for dx 0;zl and e . BTFJ because 8T12(¢ + 7¢) = 8w2d.
L 2J

Thus, to plot the graph it’s enough to consider the interval o: -

Table 1.7.
® g 4 WU 1 ¥ oS Z
2 % 4 3 12 2
o 1 . 1, 1 0
2 2 2 2
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Exercises

1. Find the domain of the functions:

a) y=+x+5-J-8-x ;

b) y= 9—x2a:rctanl;
X

C) y=a:rccosl+x2 .

2. Find the range of the functions:
|
a) y= o/ ;
b) y=sinx+cosx;
¢) y=Ig(1-2cosx).
3. Using graph transformations sketch graphs of functions given below:

a) y=|x-3;

b) y=2";

¢) y=log,(x-1)
2—x

d = .

)y 1



CHAPTER 2. LIMITS AND CONTINUITY
2.1. NUMBER SEQUENCES. LIMITS OF NUMBER
SEQUENCES

Def.: A function f that maps the set of natural numbers N into a set X

(f:N > X)is called a number sequence.
As aresult we will come to the notation:

x,=f(n),neN or {x} .

Under this concept x, is the ith term (element) of a sequence, x, is the nth
term or the general term of a sequence.
Example 2.1: Write out the first four terms of the following sequences:
—1Y
a) x, = (—), neN;
n
2
b) x = n+1

2
g n

,heN;

. TN
c)x, =sin—,neN.
n 27

—1)
olfn=1 x =(—ll=1 . In similar fashion we have x, =%,x3 =-3 x, =i.
a) x —2'1+1—3 x —zx 7 X 2
r 4 9 16

b) x1=sin£l=l, x, =sinn =0, x3=sin37n=—1, x,=sin2x=0. m

Def:: {x,}"_is bounded from above if there exists a number 4 such that
x, <A forall neN.

Def:: {x,}" is bounded from below if there exists a number a such that
x,2a forall neN.

Def:: {x,}" is bounded if {x,}" is bounded both from above and from

below.
Example 2.2. Determine if {xn}:=l is bounded from below or from above or it
is unbounded.
11 1

a) X =1—,—,..,—,...;,neEN;
) {3 32773 }

b) X ={1.-3,5,-7,...(<1)"(2n-1),..},ne N,
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0 All of the given sequences is determined by listening vales of their elements.
As we know a sequence is a particular case of a function. Consequently it can be
depicted on the xy coordinate plane (pic. 2.1 a-b).

0.4 207
L J
x oal 00..0.0.0-.0.. Lok . ’
L X 2 o  J
1 X, 4 $ }
CE: oo [0 ¢ .4 6 8 10
P - 10 L 4
0 0. * 2
- . — 20 4
] N
0 1 2 3 4 5 n
n
a b
Pic. 2.1

a) Aspic. 2.1, a shows all points interpreted as terms of the sequence are inside a

strip region bounded by two lines with y-intercepts 0 and % It means it can be found

two numbers a and A4 (in the considered case we may put A =% and a=0) such

that x <A and x, >a for all ne N. Thus in case a is bounded both from above and

from below or just bounded.
b) Apparently there are no such ¢ and A4 that x <4 and x, >a hold for all

neN. Even more |xn|>b is met for any real »>0. Hence the sequence is

unbounded. m
Note, the numbers ¢ and A4 are not unique. For example, the sequence

{xn}:zlwith the range {l,l,l,...,l,...},n e N is bounded from above. So any number

23 'n
greater than or equal to 1 may be taken for the number 4.
Def:: The least number 4 : x, <4, neN is called the supremum of {x,}"

or A=sup{x,}.

Def.: The greatest number d: x,>a, neN is called the infimum of {xn}jzl
or a=inf{x }.

Example 2.3. Find sup{x,} and inf {x,}, if

a) x, = l, neN .

n

b) x =n"+1,neN

o a) supfx,} =1, inf{x,} =0; b) sup{x,} =+, inf{x,}=2.m
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Note, the supremum and the infimum of a sequence always exist.

Def. A sequence

Is increasing (decreasing) if xn<xn# (xn>xnt]) for
all «e N.

Def.: A sequence

Is strictly increasing {strictly decreasing) if <xmi
(X >x/+) forall ~eN.

Def.: Increasing or decreasing sequences are called monotonic sequences.

Example 2.4. Determine if

IS increasing or decreasing or it is not
monotonic.

a) xn=2[7+1,neN .

(-9

b) X, =-—=—T7?eN.
n

a) Since xmt =2{n +1)+1 =2n+3>xn=2n+1 Is strictly increasing.

b) Calculate the first three terms of {xnYmA =-1, x2=-j, x3=~ . It can be

easily shown that there is no any tendency for * Indeed, xI<x2 x2>x3.
Thus {x,,Yrd is neither increasing nor decreasing. m

Def. The statement

limx =A

means that for any given B> 0 there exists a number A = A(s) such that \xn- A\ <B
forall ne N.
The inequality \n- A\ <B is equivalent to the fact that terms xn belong to

B-neighborhood of A . Graphically it means that points interpreted as terms xn are
situated inside the strip region shown below (pic. 2.2).




Consider the sequence xn=-n,/ieN. The graph of {jc }*_is depicted below

(pic. 2.3). Fix some small s>0 and draw a straight line with "-intercept 8. For
example, let B=0.6 .

Pic. 2.3

Since all terms of the given sequence are positive it’s enough to focus on the
part of the region located above the x-axis. Terms with subscripts greater than 2 are
within the considered region.

And a finite number that is only one element for the chosen s is outside the
region. Similar behavior keeps without changing whatever s we choose. This
demonstrates the fact that limit exists. Moreover the greater n is the closer xn is to

zero. And it’s intuitively understood that lim—=0.
W=0|q

Proposition 2.1. I fa sequence has a limit it is unique.

Theorem 2.1 (The Convergence theorem)
a) Every increasing sequence |xn}’ that is boundedfrom above is convergent

{there is afinite limit of {xn}” ) and
H%Xn: suQ/{x,J.

b) Every decreasing sequence |xn|” that is boundedfrom below is convergent

{there is afinite limit of {xn}” ) and
limxn=inf{xJ .
Using the Convergence theorem it can be proved that

( int
lim 1. - =e,

e VIS

where e is called the Neper's number, e =2,18281...



2.2. LIMITS OF A FUNCTION

It is often necessary to study behavior of a function in a neighborhood of some
point. Consider a function y= f(x) which is defined in some neighborhood of
a point x,. Analyzing behavior of / means that we equate the argument x to values
which approach x, as close as we wish: x=x,£0,1; x=x,£0,01; x=x,+£0,01 and
so on (this procedure is denoted by the symbols: x—x,) and then we calculate the
corresponding values of the function: f(x,£0,1); f(x,£0,01); f(x,%0,001),.... that
may approach the definite number 4 or not.

Let’s consider f(x)=x", x,=2. Then at x=2+0,1 f(x)=2,1=4,41; at
x=2+0,01 f(x)=2,01>=4,0401; at x=2+0,001 f(x)=2,001*=4,004001. In
this case the values of the function obviously approach 4. It is said that the function
f(x)=x* has the finite limit 4 at 2. The common notation: limx*=4 or

x—2
x* =4 if x — 2. This statement will be proved below.

Def.: The statement
lim f(x)=A4

means that for any given &€>0 there exists 8=38(¢) such that | f (x)—A|<8
whenever |x—x,|<3.

Note, that f(x) isn’t needed to be equal to A at x,; in fact, it can be even
undefined at x,. The given above definition can be referred to as the (&,8) -

definition of a limit or Cauchy’s definition of a limit.
Example 2.5. Prove, that limx* = 4.

x—>2

o Let’s take € >0 what we wish. Now, we want f (x) =x* to differ from 4 by

less than €. In other words, we want | f(x)- 4| = |x2 —~ 4| <¢. Solving this inequality,

we have
x<A4d+¢
T ey RIS LAy S P R g
x>\4—¢

Since x e U (2) , only positive solutions of the inequality should be considered.
We may represent numbers in the left and the right sides of the last inequality in the
following form: \/4—g=2-8,(5,>0), V4+&=2+85,(8,>0) (pic. 2.4).

Let & be min{3,,5,}. Itis obvious that 8=38, =/4+&—2 (see pic. 2.4). This
is guaranteed if |x - 2|< o, thus for the considered €>0 choosing x within a
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symmetric neighborhood of 2 with radius 8 guarantees that /(x) is within a
symmetric neighborhood of 4 with radius s or Ii_r>gx2:4. |

Theorem 2.2 (Uniqueness of a limit)
Afunction y =f{x) has at most one limit.

Theorem 2.3
If a function y =f{x) has a finite limit as x—»x0 then f{x) is locally

bounded near xO0.

Remark 2.1
The definition given above is valid only for the case when x0 and A are finite.

If x0 = oo the definition can be modified as follows:
limfix) =A
x>0 V7
if for any given s >0 there exists 8 =8(s) such that
Il (x)- <s whenever |x| >

Graphical interpretation ofthe considered case is illustrated below (pic. 2.5)

Pic. 2.5



If X0 is finite and A = the definition can be written in the form:

limf (x) =

if for any given e > 0O there exists 8 =8(e) such that |/ (x)| >—whenever |x- x0<8

(pic. 2.6).

Pic. 2.6

The negation of existence of a limit can be formulated as follows:
there exists e>0, such that for all 8>0, there exists x, which satisfies
0<|x-x0<8 ,but|/(x)-Al|>e.

Remark 2.2
1 None of the trigonometric functions (sinx, cosx, tanjc, cotjc ) has a limit

aS x — o0 .
2. The functions arcsinx and arccosjc don’t have limits as X — oo because
their domains are bounded sets. At the same time

fim arctan x :}Q%arctanx :—;l .

Def.A function / (x) is called an infinitely large function, if lim/ (X) = oo

Def. A function fi\)/( )7 is called an infinitesimal function, if Iimfi\>/<)7: 0.

General theorems about limits

Theorem 2.4
/ (X) has afinite limit A as x approaches x0 if and only if there exists the

representation f (x) = A +a(x) where a(x) is an infinitesimalfunction as x —»x0 or
f (X)=A+a(x),a(x) =00 lim/ (x) =A.



Theorem 2.5 (connection between an infinitesimal function and an
infinitely large function)
a) if a(x) is an infinitesimal function as x->x, and o(x)#0 then

A(x)= oc(l ] is an infinitely large function as x —>x,.

X
b) if A(x) is an infinitely large function as x—x, and A(x)#0 then

1
a(x)= e is an infinitesimal function as x —>x,.

Theorem 2.6 (limits arithmetic)
Let f(x) and g(x) be defined in a punctured neighborhood of x,

(loj(xo) =U(x))\{x,}) and lim f(x)=4, lim g(x)=B, where A,B are constant.

xX—>Xq xX—>Xq

Then
a) lim f } A+ B;

XX,

{
b) llm{f g(x} A-B;

) _A .0

¢) lim ,
) X—>Xq g(x) B
Corollary
lim {C-f(x)} =C-lim f(x), C =const.

Theorem 2.7 (limits of a composite function)
Let y be a function of u (y=f(u)) and u be a function of x (u=g(x)).

f(u) and g(x) are defined in a neighborhood of u, (U(u,)) and a neighborhood
of x, (U(x,)) respectively. If lim g(x)=u, and lim f( )=A then f( (x )) has a

limit at x, and limf(g(x)) =A.

Theorem 2.8
Let f,(x) and f,(x) be defined in U(x,) and lim f,(x)= 4, lim f,(x)=B. If

H(x)< fo(x) or fi(x) < f,(x) hold for Vx eU(x,) then A<B.
Theorem 2.9 (Sandwich theorem)

Let  f(x), f,(x) and o(x) be defined in (;(xo) and
lim f,(x)= 4, lim f,(x)=A. Suppose, f(x)<¢(x)<f,(x) holds for Vxe(}(xo).

X=X,

Then limg(x)= A (pic. 2.7).

X=X,
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Pic. 2.7
Theorem 2.10

If f (x) is an elementary function, defined in I l where x0eDf, then

limf(x) =f(xO0).

X—AXq

Thus, for example, lime* =exX or I|m siiu = sinx0 are valid for any real xO.
P

X —>Xq

Properties of infinitesimal functions
Let oc(x) and P(x) Dbe infinitesimal functions as

lima(x) =o. lngp() =o.
1. lim{a(x) +p(X)}=0;
2. Iim a(x) ¢/ (x) =0, where Iim/ (X) =A;

3. I|m— % 0, where I|mf(x) =A,A"0.
XX/(x)

We can visualize the given above properties as the scheme:

0+0 =0,
0<A =0, A = const,

=0,A =const, A 0.

Properties of infinitely large functions

Let F(x) and G(x) be infinitesimal functions as
limF(X) = oo, lIMG (X) = oo.
X >0 x>0

X-»X0:



| llm{F(x + x} o ;

x—>x,

2. lim{F(x f(x)} =00, where lim f(x)= A, A= const;
XXy X=Xy

3. llmF(x) f(x):oo where lim f(x)=A4, A=0.
X2, x—>x,

4. llmF(x) G(x)

X—>Xq

Visualization of the properties are:

0 + 00 = 00,
w+ A=0w,4=const,
- A =0,A4 = const,

o0 + 00 = 00,

Example 2.6. Find lim 3+ 5

=7 x -

is an elementary function that is defined at the

) ) 3x+5
o The rational fraction X

x=5
: 26
limit point 7. So 11m3x+5= 3+ =3 7Jr5=—=13. |
=7 x =95 x-5 7-5 2

Example 2.7. Find lim 2* (x2 —~ 4).
0 The elementary function 2° (x2 - 4) is defined at 0. Consequently,
lim2*(x*-4)=2(0°-4)=1-(-4)=—4. =

x—0
Example 2.8. Find lim 3X+5

x—5 X—S

O Inspite of example 2 the fraction 55 isn’t defined at 5. To give the
x_

5
as a product: 3%+ =(3x+5)-
x=35 x-5 x—=35

limits of each factor. Then, lirrg(3x +5)=3-5+5=20.

and find

answer we should represent

The function x—5 is an infinitesimal one as x — 5, so according to theorem

2.5 5 is an infinitely large function: hrr% 5= o . Then the third property of
X — X=X —
infinitely large functions can be applied: lim +55 = 1irr51(3x +5)- s=-m
=5 X — x—> X —
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Example 2.9. Find lim =

X—>0 X

0 Due to non-existence of a limit of sinx as x — o we can’t calculate the
limit as a quotient of two functions: sinx and x. To get the answer we should rewrite
sin x

sinx . | :
as a product: —— =sinx-— . Since |s1nx| <1 for any xe R, the
X X X

first factor sinx is a bounded function. According to theorem 2.5 the second factor

the function

1 is an infinitesimal function as x — . So we can apply the third property of
X

o ) . . osinx .. . 1
infinitesimal functions and receive: lim——=limsinx-—=0. m

X—>0 x X—>0 x
; . . . x* —3x+1
Let’s consider the problem of calculating a limit of ——s—— as
X+ X
2 2
. x"=3x+1 : x"=3x+1 . : .
x > o:lim—————. The function ————— 1is a rational fraction, whose
x>o x X X +Xx

numerator and denominator are polynomials. Graphs of the polynomials are given
below (pic. 2.8). The solid and dash lines are used for the graphs of x> —3x+1 and
x* respectively (pic. 2.8, a). The graph of x° + x is depicted in pic. 2.8, b.

800 T T T T 40

600 200

400\
200F

- 200,

- 40

Pic.2.8

As shown in pic. 2.8 the numerator approach +« as x — 4 or x - - and
the denominator approach —o as x — - and +w as x — +oo. If we omit sign of

e : : 0 : . . .
infinity we will get the expression {—} This expression is called the indeterminate
o0

Jorm. The word indeterminate is used because a further analyses is necessary to
conclude whether a limit exists or not.

To calculate the limit we should carry out some algebraic transformations of
the given function. In this case, we say, that we investigate the indeterminate form.

Other examples of indeterminate forms are: [% }, [0-00], [0 - oo],[l“’},[oo],[ooo] .

39



Firstly we should identify the highest exponent of x in the denominator and
divide both the numerator and the denominator by it. Then the limit of all remaining
terms should be taken.

l—>O,
3 l_i_i_i X x—®
. X" =3x+1 x x° X 1 0-0+0
lim=———= -l - 0)=| ———=|=o0.
x>o X7 4 X x>0 3( 1) X x> 1+0
x| 1+—
X 1
—3——)0
X x>
In a similar fashion we can show
L 7 +8xP+3 7 10-x-2x" +3x°
lim —; =—; lim . =0
x>e 5x°+2x+1 5 xoe 4xT-5x-6
According to these results it leads us to the rule:
0, if n<m
. P(x) .. " G "2y + .
lim ,,( )=hma0x +a1x_l+a2x_2+ +a,x+a, _ &’ if n=m,
o2 (x) webx" +bx" +b,x" +..+b, x+b, A
(o, if n>m.

P
The limit 1imQ"L(x)) is referred to as the third remarkable limit.
X—>0 n x

Example 2.10. Find lim(\/x2 1 —1) .

X—>0

0 We are dealing with one more indeterminate form [oo - oo] . In the considered
case the given function involves radicals, so to find the limit we should multiply the

function vx* +1—+/x2—1 by it’s conjugate, that is Vx> +1++/x* —1, and then divide
it by the same expression vx* +1+/x?

~1. It should be noted that multiplying by
the conjugate is equivalent to applying the “difference of squares” formula

(a-b)(a+b)=a’-b* . That implies eliminating radicals. Moreover, the conjugate

V2 +14+0x =1 >0 as x> .

. . —\ (\/x2+1—\/x2—1)(\/x2+1+\/x2—1)_
)161_1)2(\/;”_\/)6 _1)_}61—1330 (\/x2+1+\/x2—1) -
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i 2 2
=lm =|—|=0.m
x“)w(\/xz 14+ —1) o0
2
Example 2.11. Find liIIllﬂ
Xx—> x —_

o Let’s evaluate first the numerator x> —4x+3 and the denominator x—1 at

x=1: x*-4x+3| =1-443=0 and x-1| =1-1=0. It leads to the

indeterminate form [6} . Nevertheless the given function is a rational function our

strategy differs from the previous one. We will simplify the fraction by factorizing
both the numerator and the denominator. Since x* —4x+3=(x-1)(x-3),

xP—4x+3 :(x—l)(x—3)

—x-3.
1 -1

This transformation holds for all values of x: x #1. Thus, we get

2 - —
i —4x+3=lim(x 1)(x-3)

=1-3=-2.
x—1 x—=1 x—1 (_x_l) "

x*—4x+3
2 L. o

Example 2.12. Find lim

=3 x2 —6x+9

0 Following the strategy given above, substituting 3 for x in the fraction

2 —
X odx+d leads to the indeterminate form {%} . So factorizing gives us:

x*—6x+9

2 —_ —
limWﬁim(x D(x=3)
=3 x _6x+9 x—3 (X—3)

The obtained fraction can be simplified by cancelling the common factor

(x-3): lim(x_l)(x_3)=lim(x_l)=[2}=oo.-

%3 (x—3)2 =3 (x-3) [0

Example 2.13. Find lim Vx+ 22_ V6 .
x—2 X - 4

o Substituting 2 for x in the given function \/x+22—:{67—x leads to the
x —

. . 0 . .
indeterminate form [6} Moreover the numerator \/x+ 2 —\/6 —x 1s an irrational

function involving square roots. So firstly we should multiply the function by the
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conjugate of Vx+2-+6—x: Jx+2+6-x and then divide it by the same
expression. Further we should factorize the denominator x*—4=(x-2)(x+2).
Thus,

o \/x+2 \/6 X hm(\/x+2—\/6—x)(\/x+2+\/6—x)
2 x' -4 2 (x—2)(x+2)(\/x+2+\/6—x)

i x+2-(6-x) i 2(x-2)
x—>2(x—2)(x+2)(\/x+2+\/6—x) x"z(x 2)(x+2)(\/X+2+\/6 x)

=lim 2 _ 2 :l.
x‘>2(x+2)(\/x+2+\/6—x) 4-4 8

Jx-1

Example 2.14. Find lim——

x—1 _\/— 1

O Inspite of the previous cases when given functions were rational fractions,
whose numerator and denominator were polynomials, the considered fraction

involves radicals. Moreover, after substituting 1 for x in we will have the

x_
Ix -1

. . 0 x : : :
indeterminate form [6} . We can convert A into a rational fraction by means of

substitution. For this reason let’s identify the highest exponent of x 1n the numerator
: : 1 1 .
and in the denominator. They are 3 and 3 respectively. Then find the least common

multiply of 2 and 3. It’s 6. So we should introduce a new variable ¢ such that
=¢°. Thus, we have
6 £ - (t=1)(+1+1)

—|lx=t, =
x—>1:>t—>l‘ !c_r)r}ﬂ 1 £1—>1 (t=1)(¢+1)

CotP+r+1 1P+1+1 03
=lim = =—.1
>1 4] 1+1 2

We can single out the special group of limits. These limits are called
remarkable limits. One of them so called the third remarkable limit is given above.

Also it can be proved that

x>0 X 0

fim S00) _ [9} =1,

It is called the first remarkable limit.
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To prove this fact let's make use of the illustration in pic, 2.9. The proof will
be run for two cases: x>0 and x <O0. Let’s start with the case when x> 0. Plot the
unit circle and take a point M on the arc of the circle located in the first coordinate
quadrant. Draw two perpendiculars from the points M and C to the x-axis. Then
consider AKOC', AMOC and the sector MOC . Denote the angle ZMOC as X .

Calculating the area of AKOC, AMOC and the sector MOC, we get
=21KC -OC zzltanx, OC =1 as aradius ofthe unit circle, tanx =g-%- :

e\,/oé =?MB 0C ==sinx, sSinx = OM =1 as aradius of the unit circle;

2 oM’

Ssﬂ\m:%r X =;—x, r =1 as aradius of the unit circle.
As it shown in pic. 29 Smoc <SsiMIC < SMoc zisinx <2ix 1<?tanx :

X 1
Dividing all parts of the inequality by sinx leads to 1<—— < Taking
sinx  cosx

reciprocal of each part and applying the Sandwich theorem we have
SINX _ .

cosx < X <> fancosx = 1 fnd= #s fimSI0X =1
Y QQ) pay) 2(% Y
Now let x <0. Make the substitution x =-1t,then />0. So

. sinx . _sin(-/y .. -sin(t)_ . sin(/) _
zlm) ----- X =-t=>t =-x\ _tll';{)‘ - —flLrp---:-t— —Itl_rpo—f— =1.
(,>0) (

r>0) (,>a)
that was to be shown.

ta
Example 2.15. Find I\iNr\rol ()



: sin X
0 Representing tan x as
COS X

. tanx 0 . sinx 1 1
lim =|—|[=1lim —=]—-=1m
0 x O 1

Example 2.16. Find lim-— 2%

S

0 According to the Double angle formula 1-cosx = 2sin2§ . Then

, we get

.2 X X X X X
1—cosx [0 | 2sin > | 2sin— sin— 2sm— sm—
limz——[—}z Im——*==lim . =lim
x>0 x>0 x>0 b x>0 9. X
% A R FE a7
X
sm— sm—
hm 2 _1.1=1.m
2 x—0 y /
In(1+x) . e -1
Also it can be proved in a similar way that IIII(}—=1; hn(} =1;
x> X x—> X
1+x) =1 %y — i
lim(—xl—=l; lim XL g dresiny g, arctanx
x—=0 ox x—0 X x—0 X x—0 X

n
Comparison of infinitesimals. Big O and little o notations

Suppose, a(x) and B(x) are infinitesimal functions or infinitesimals as
x—>X,,1.e. limo(x)=0 and limB(x)=

X=X X=X,

Def.: We say that oc(x) is an infinitesimal of the same order (the same order

of smallness) as B(x) as x — x, if lim (;((x)) =k, 0<[k|<oo.
x—)xo x

It can be written that o(x) = O(B(x)), x—>x, and B(x)= O(oc(x)), X—>X,.
Def.: We say that o(x) is an infinitesimal of higher order than B(x) as

x> X,, 1f 1im3‘@=o.
X=X, B(x)

In this case o(x)=0(B(x)), x > x,.
Def.: We say that a(x) and B(x) are equivalent infinitesimals as x — x,, if

_ofx)
chl—>x0 B(x) -
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Remark 2.3
X, can be a constant, 100 .

Example 2.17. Let o(x)=1-x* and B( )=1-x. Both functions are

*) 4
)

X

infinitesimals as x — 1. Then, 11m

—2¢O So a(x) and B(x) are

1-
a(

( x—>1
infinitesimals of the same order.

Example 2.18. Let a(x)=x" and B(x)=x*. Both functions are infinitesimals
3

as x—0. Then, lim g((x)) =lim— x2 =0. Thus, a(x) is an infinitesimal of higher
x—> X x>l x

order than f(x).
Example 2.19. Let o(x)=sinx and PB(x)=x. Both functions are

e el .o
infinitesimals as x — 0. Then, lim (x )—l sin x ——=1. Hence, o(x) and B(x) are
x—1 B( x) -l x
equivalent infinitesimals.
Summarizing the above, we can make a list of equivalent infinitesimals:

sinx~x as x—>0, e“—1~x as x>0,

tanx~x as x>0, Inl+x)~x as x—>0,
2

1—cosx~% as x>0, (1+x)*-1~ax as x>0,

i \/”1+x—1~ﬁ as x>0
arcsinx~x as x>0, " .

arctanx~x as x>0 ,

Proposition 2.2
If /(X)) ~¢y(x) and f,(x) ~9,(x) as x— x, , then

lim (), (x)= lim £,(0)0,(6), lim 20 _ L0
>0 Q(x) % (%)
Thus, equivalent infinitesimals can be replaced each other.

Example 2.20. Find lim sin 3x
x>0 Sin 5x
. sin3x |0 3x 3
o lim sin3x ~3x,x >0 - _Jﬁ=_
-0 8in 5x I:O:I sin 5x ~ 5x, x = 0 !3015)5 5™

Example 2.21. Find lim sin Sx

x>0 Sin” X
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. sinx® {O}
o lm = —|=

=0sin’x |0

. 6 6 6

~ N . X .
Sy ~Xg, X 0 =lim—=limx=0.m
sin"x~x",x—0

x—0 xS x—0

2
Example 2.22. Find lim 2205%
=0 1 —cos3x

arctan5x* [0 _[arctan5x® ~ 5x%, x—0 55’ 5-2 10
O lm——=|—|= (3x) =lim——=—=—.mnm
x—0 l_cos3x O l—COS3x~ 2 ,x—)O x—0 2)(72 9 9
2
Example 2.23. Find lir%w
x—> X
sin x sin x
. —si 0 . B . sl —
i fED X : sinx _ [_} — lim S05x_ _ i Sinx(1 co3s x) _
x=30 X 0 x—=0 X x>0 COSX X
2
- sinx~x, x—>0 x-x— 1
lim 1 ‘hmsmx(lzcosx):1 52 1lim—2 -1
x=0 cos x x>0 X —COSX ~ 7,-7(: —0 x—0 x3 2
The limits

£i_r)2(l+%]x = [1‘”1 =e or lxiirg(1+x)% =[1°°:| =e

are referred to as the second remarkable limit.
In the previous subsection when we observed number sequences we mentioned

that lim(l + l] = e . Using this fact, let’s show that lim (1 + l) =e.

11— n X—>0 X

X—>+0 X X—>—0 X

The problem can be split into two problems: lim [1 + l) =e and lim [1 + l) =e.

Let x —> +o0. Then for every positive x we can put that n<x<n+1 , where

<lsl:>1+ ! <1+l£1+l :

n+l x n n+l X n

n x n+l
(1+—1 ] <(1+lj s(1+1] .
n+l1 X n

n =[x] is the integer part of x. So

Thus,
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Moreover,

lim

N—>00

n+l
1 oo\ ] e
1+ = —=¢
n+l 1

lim (1 + L]
n— n+1
n+l n
lim(1+lj =lim(1+l) -lim(1+l)=e-1=e.
n->00 n n—>0 n n—>0 n

By the Sandwich theorem lim (1 + l) =e.

X—>+0 X

Let x > —oo. Using the substitution # =—x , we get

lim (1+i) =|t=—x:>x=—t|= lim (l—l] = lim [1+(—ln =e.
"\ Refnark 2.4 o t o !

We should focus on the fact that the term 1 and the exponent » involved in
n

[1+1] as well as 1 and x in (1+lj are mutually inverse values, i.e. their
n X X

product must be equal to 1: for example, L n=1.
n

X—>0 x

Example 2.24. Find lim(l + ij :

0O We deal with the indeterminate form [1”]. So to calculate the limit we

should use the second remarkable limit. But first we need to modify the function

X X o

3
: . 1 «
lim[1+§] =[1°°}= x =3 =11m(1+—j =11m{(1+lj } =¢’ =
X—>0 x oL—>0 a oL—> a

[1 + i] making the substitution 3 = 1 :

Example 2.25. Find lim(3x i 1] :

X—>0
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o0 Dividing each term in the numerator by the denominator, we get

: o 1Y : :
11m(3);+1] =11m(1+3—] . Further we can follow the strategy given in the
X—>0 x X—>0 x

previous example.

11
-~ 1
X 3.x (04 2 o |3 1
lim[ 1+—— =[1”°]=x:3 tim{ 1+ | =tim| [ 141 | =¢F.m
X—>0 3x 3 oa—>o o o> o
X—>0=0 —>©

1
Example 2.26. Find lir%(l +sinx)x.

0 To get the answer we should reduce the problem to the second form of the

1
second remarkable limit: lim(1+oc)5 =e¢. For this reason transformation of the

a—0

1 . 1 ' . . L.
exponent — into — Sl by multiplying and dividing the exponent by sinx is
X sinx X

offered. Then

sinx

1 1 — sinx sinx
. . E w ) ) LI . == im
hm(l + smx)x = [l ] = hm[(l + smx)smx} =lime * =¢** * =e¢.

x—0 x—0 x—0

Here we applied the theorem about the limit of a composite function and the fact, that

the exponential function e is continuous.m
1

Example 2.27. Find lim[1 h 2xj e .

x=0\ 1-3x
1 1 2 1 1
arctan 4x —3 + 3 + arotan 4x arctan 4x
Dlim(1+2xj " o[17]= -3} + By + 24 =lim(1+ X ) e
x>0\ 1-3x 1-3x x>0 1-3x
Sx 1
1-3x 5x 1 1-3x [1-3x arctan 4x
Sx E arctan 4x . 5 S5x . Sx.i 2
=lim(1+ > j t == lim (1+ al j =lime=* 4 =¢* =
x=0 1-3x x—0 1-3x x—0
Remark 2.5

There is the definition of a limit in terms of sequences (Heine’s definition of a
limit). 1t states that f(x) has a limit at x, or lim f(x)=A4 if for every sequence

X=X
0

{x,}” that approaches x,, the sequence of the corresponding values { f (xn)}

n=1

approaches 4.
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Using this form of the definition it can be enough easy to prove that 1im sinl
x>0 X

. : T
doesn’t exist. Consider two sequences:xn=nn,x;=5+2nn,neN and find the

sequences of the corresponding values: f(x,) = sinL =sinnn, f(x,)=sin (g + Tn ) .

1/nn

It’s obvious that x, >0, f(x,) >0, n—> o while x, >0, f(x,)—>1, n—>w».By

we take the limit of { f(x, )}jzl must

exist and be equal to the same value. In the considered case lim f(x,)=lim f(x!), so
n—yc0 n—>0

. . . . o0
Heine’s definition whatever sequence {x,}

the given limit doesn’t exist.
Exercises

In the exercises a is a student’s number, b is the last numeral in a group
number, m 1is a natural number that can be considered as a parameter:

1. Find lim %"=, 2. Find lim $* =99 3 Fing |jm LS YOSY .
n—)ooan— n x—a XxX—a =0 ¥ 4+ax
x—a)" ax*—b e —1
4. Find lim ] ; 5. Find im——; 6. Find lim— ;
ol x + b = hx* +ax x>0 sin bx

. 3 E
7. Find lim BUESID) 6 g d fim Y. 10, Find limm? - In(1+ x)";
x=0  grctan bx x=>-1x" —m x—0
22 22
11. Find lim———" 12, Find lim————————;
mx —(m+1)x+m =>1x"—(m+1Dx+m
22 32
13.Find lim ———= 14, Find lim>————,
x>-mx” —(m+1Dx+m x=>n xX° —mx
o o Ax-m
15. Find lim (\/x+ 2m —\/x+m) ; 16. Find lim =
X—>+0 x=>m”~ X— M
N2x* —-m®

17. Find lim === —
X—n x —m

2.3. CONTINUITY OF A FUNCTION

In the previous section the concept of a limit of f(x) as x —x, was stated
under the condition x#x,. And what is more, the fact of existing f(x,) was

ignored.
Now let f(x,) existand lim /' (x)= f(x,).

X=X
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a. /(x0) exists;

b. limf(x) exists;
X—»0

c. \imf(x) =f(x0).

Remark 2.6
According to the definition given above and the fact that limx =x0 we can put

X-»X0
I(+*0) =/ ( i =)I(_i»[(73/(x).

In other words the limit sign can be replaced with the function symbol f for a

continuous function.
Example 2.28. Examine / (x) for continuity at x =0, if

N
i’xcboi
/() == b)/(x) =sgn(x); e)/(x) =lsgn()l; ) f(x) = ©
O Plot graphs of the given functions first.
f(x) %)
O
a h
f(x)
! 1
\
0 © 0 .
¢ d

Pic. 2.10



a) f(x) =§ is not defined at x=0. Thus, f(x) is not continuous at x=0

because of failure of condition a (see the definition given above).
b) Condition a is met for f(x)=sgn(x) as sgn(0)=0. But condition b is

failed. As it’s knowniif lim f (x)= lim f(x) then lim f(x) exists and vice versa.
X—>x0—

x—=>x5+0 X=Xy

In the case lim f (x)=-1= lim f (x)=1, that implies nonexistence of lim 1 (x).

x—>0

Hence, f(x) is not continuous at x=0.

c¢) Asit’s shown in pic. f(0) exists (f(0)=0)and lim f(x) exists
(lirg)f(x) = llglof(x) =1). But lxlir(}f(x) =1% f(0)=0 or condition cisn’t met. So
f(x) is not continuous at x=0.

d) f(x) is continuous at x=0 because f(0) exists (f(0)=1), !E)I(}f(x)

exists(limf(x)=lir?of(x)=1)a:nd lxirréf(x)zf(O)zl. m

x—>-0

Notice, that drawing the graph of a continuous function can be carried out
without any breaks.
The (&,8) - definition of continuity can be stated as follows:

Def:: f(x) is said to be continuous at x, if for any € >0 there exists
3=23(g)>0 such that |f(x) —~ f(xo)l <& whenever |x—x,|<3.

Let x—x,=Ax (x isapointina & - neighborhood of x, where f(x) is
defined). Then lim f'(x)= f(x,) can be rewritten as

X—>Xg

lim £ (x, +Ax) = f(x,).

X=X,

According to the definition of the limit ‘ f(x+Ax)— f(x, )I<8. The
expression f(x,+Ax)— f(x,) is Af called the increment of f. Further denote

fx+Ax)=f(x,) as a(x), ie. f(x,+Ax)-f(x)=0(x). So |oc(x)|<8 that
means o(x) is infinitesimal as x—x, or lima(x)=0. Hence, since Ax—0 as

X=X,

x = x, we get one more form of the definition of continuity:

limAf =0.

X=X

Example 2.29. Verify continuity of f(x)=x" at any real point x.
0 Using lim Af =0, we have

X=X,

lim A7 = 1im (f (x+Ax) = £(x)) = lim (x+ Ax)’ -2 =

Ax—0 Ax—0 Ax—0
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=bl '* " _2arAX+(M 2-/)=<>-
Thus, /(x) =x2is continuous at any point x =

Def.: /(x) is called right continuous at x0 if Iimof(x) =/(x0+0).

X—AXq+

Def.. f (x) is called left continuous at x0 if lim fix) =fixO0- 0;.
X-»X0-0 7

Remark 2.7
Consider /(x) =x, xe(0,1] (see pic, 2.11). f(x) is right continuous at x =1,
but /(x) is not continuous at x=0 (f(0) doesn't exist).

Def: f{x) is called continuous on X if f(x) is continuous at every point
xeX.

Properties of continuous functions

Let f{x) and g(x) be defined in some neighborhood of x0 including x0 itself
and continuous at xO0.

1 Moreover, if /(x) is continuous in the considered neighborhood of x0 and
({x{) 0 there exists a neighborhood of x0O where f(x) ®0 and /(x) keeps its
sign (the sign of /(x 0)).
f(r)

2. 1(*)x g(x),/(*)*E£(*),-i1-y(g(y”™o) are continuous at x0.
3. A composite function /(g (x)) is continuous at x0 and

lim/(g(x)) =/(lim k(§)) =/(g(-T.)).

4. All basic elementary functions are continuous on their domain.



Classification of points of discontinuity

Let A=f(x0-0)= Iimgl(x) and 5 =/(x0+0)= Eim. /(X).
1 If AB exist, A,B =const (they might take different values), but A*B

then f{x) 1is said to have a jump discontinuity and x0 is a point of

discontinuity of the first kind.
2. If A B exist, A,B=const and A=B then /(x) is said to have a

removable discontinuity and x0 is a point of removable discontinuity.
3. In all other cases /(x) has an essential discontinuity and xO is a point of

discontinuity of the second kind.
Example 2.30. Examine / (x) for continuity, if

X b./w = {jti IL?°C

d /(x) =x2.
/W =(fMLS°d;

O Plot graphs of the given functions first.



a. f(x) is defined at every real point x except x=0.So f(x) is not continuous

at x=0 (condition a is failed). It’s obvious that lim f (x)= lim f (x)=+o0.

Thus f(x) has an essential discontinuity at x=0 and x=0 is a point of

discontinuity of the second kind.
b. f(x) is continuous on (—,0)U(0,+) as a linear function. The only point

that interests us is x=0. Condition a is met for f(x) (f(0) exists, f(0)=1)
while condition b is invalid (lir{lof(x)z—lst limof(x)=1). So f(x) is not
continuous at x=0. Since both one-sided limits exist and are constant, f(x)

has a jump discontinuity at x=0 and x=0 is a point of discontinuity of the
first kind.
c. By analogy with case b x=0 1s the only point of discontinuity of f (x)

Condition a and b are met for f(x) (f(0) exists, f(0)=1I;
lim f (x)=lir£10 f(x)=0). However condition ¢ 1is failed because

}Lr%f(x)= lim /(x)=0= f(0)=1. Hence, f(x) has a removable

x—>+0
discontinuity at x =0 and x =0 is a point of removable discontinuity.
d. f(x) is continuous for all real x even at x=0 because f(0) exists,

£(0)=0: lim £ (x)=lim /() =0= 7 (0) =

1
3x+1°

. o 1 .
Example 2.31. Examine f(x) for continuity at x = -3 if £(x)=

0 The elementary function f(x)= 1s continuous for all real x except a

3x+1

: : : 1
point where the denominator 3x+1=0, i.e. except x = 3 So x= —% is a point od

discontinuity of f (x) . Let’s classify the point. For this reason we should evaluate

one- sided limits at x = ——1— : lim ! =—o0; lim 1
x—)—;—O 3x+1 x—>—§+0 3x+1

=40,

DL . 1
It means f (x) has an essential discontinuity at x = -3 and x = —% is a point of

discontinuity of the second kind. Behavior of f(x) near x= —% is illustrated below

(pic. 2.13,a). m
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Pic. 2.13
X —3X+2
x2-1
O f (x) can be considered as a ratio of two polynomials, that are continuous
everywhere. So f (x) is continuous for all real x except points where x2—1=0, i.e.

X =%1 (see property 2 for continuous functions). Thus x = %1 are points of
discontinuity of f (x). In order to classify them, one-sided limits at x = +1 should be
calculated.

Example 2.32. Examine f (x) for continuity, if f (x)

Let x=—
ﬂ f (x)= I|m 25x+2- ( ~1S(X+b- lim —X+1——®
— —)(x—=2
lim f (= lim X X2 i XA x=2
x—0 x—4-0 x2—1 X—0 (x —4)(x +1) »x—Eox+1
Now let x =1
i f ()= lim (x—)x=2) "0 _ . Xx—2 _1,
X1—9(X—1)(X+1) L0J x3ox+1 2
lim f ()= lim x—=)x=2) ro"_ . x—=2_ 1

10 (x —)(x+1) L0J xHx+1 2°

According to the obtained results we conclude that f (x) has an essential

discontinuity at x =—4,x=—21 is a point of discontinuity of the second kind and
f (x) has a removable discontinuity at x=1 and x=1 is a point of removable

discontinuity. The graph of f (x) is given above (pic. 2.13, b). m



Example 2.33. Examine / (x) for continuity, if

x+3, ifxe[-2;0),
2 ,ifx =%,
x2 ,ifxe(0,2].

O/ (x) is referred to as a piecewise function. As it follows from its analytical
representation, /(x) is continuous on [-2,0)u(0,2] as elementary function
considered on its domain. We have interest in analyzing behavior of /(x) at x=0,
Calculate the one-sided limits at x = 0:

)I(!ggﬂgle;)/ = JiIgyX +3) =3; )Ié%fix) = )Ié%xk 0.
Summarizing the above / (x) has ajump discontinuity and x =0 is a point of

discontinuity of  the first kind (lim fix), limfix) exist,

but)!_im)f(\y )7 =3 op)l(iqbf i\;() =0). The graph of fi x)l Is drawn below. =

Properties of continuous functions on closed intervals

Theorem 2.11 (The Intermediate Value Theorem, IVT)

If /(x) is continuous on \a,b\ and f(a) =A, f{b) =B, thenfor any C:
A<C <B there exists at least one ¢ such that f(c) =C.

Corollary

If /(x) is continuous on [a,b] and attains values with opposite signs at the
endpoints a and b, then f (x) takes zero value at least one point within \a,b\.

Theorem 2.12 (the Weierstrass Extreme Value Theorem)
If/(x) iscontinuous on \a,b\, then /(x) attains its extreme values on it.



Example 2.34. Show that f(x)=x"+x takes the value 9 for some x in [1,2].

o f(x)=x’+x is continuous on [L,2] as an elementary function (a
polynomial) considered on a subset of its domain. Moreover, f (1)=13 +1=2 and
f(2)=2+2=10. Since 9 is an intermediate value between 2 and 10, the IVT says
that there is a point x such that f(x)=9.m

Exercises
1. Find points of discontinuity of f(x) and classify them if any

1 1
. C X ) =arctan "
cos® x ) /(%) x-5

sin x

D /(1)=225 1) £(x)=

d)f(x)zﬁ; e) f(x)zsin%.

2. Using the definition prove that the following functions are continuous at
every real point xe R:

a) f(x)=x";

b) f(x) =sinx;

¢) f(x)=x*-5x+2.

3. Examine f(x) for continuity on intervals [0,2], [—3,1],[4,5]:

) f(0) =
b) f(x)zlnjzt;l;
1
) Iy
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CHAPTER 3. DIFFERENTIAL CALCULUS

3.1. DERIVATIVES AND THEIR APPLICATIONS

Let y=f(x) be a function defined in a neighborhood U(x,) of a point x, .
Increase x by Ax so that x=x,+Ax remains in the same neighborhood U(x,) .
Ax is called the increment of the independent variable x . Then Af = f(x)- f(x,)
is the increment of the function y = f(x), caused by changing x . Af can be written
as Af =f(x0 +Ax)—f(x0).Notice, Af depends on both x, and Ax : Af(xO,Ax).

Def.: A derivative f'(x,) of the function y= f(x) at x, is called the limit of
the ratio of Af'to Ax (Ax#0) as Ax—0:

: . Af
f(x)=lim T (3.1)
if it (the limit) exists.
. . , dy df
Other notations for the derivative such as )'(x,), —=(x,), d—(xo),
X X
d df . df dy . :
—f(x,), — ., f'(x,), V' (x,) are also used. The notation —, —— involvin
dxf( o) dx|_ fx( 0) yx( o) A’ dx g
differentials is referred to as the Leibniz’s notation. The notation [ ' is
Lagrange’s notation.
Remark 3.1
If the limit value in (3.1) is equal to a finite constant, i.e. Llcm0 % =const <o ,

then the derivative is called a finite derivative. Otherwise the derivative is called an
infinite derivative. If the limit in (3.1) doesn’t exist then the derivative f '(xo)

doesn’t exist as well.
Def:: A right-hand derivative f|(x,) of the function y= f(x) at x, is

fl(x,)= lim ——.

Def:: A left-hand derivative f'(x,) of the function y= f(x) at x, is

, . A
()= i, 3

Remark 3.2
At endpoints of a closed interval it can be defined one-sided derivatives only.
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Theorem 3.1 (the necessary and the sufficient conditions for existence of a
derivative at a point).

A function f(x) has a derivative f'(x,) at x, if and only if one-sided
derivatives f](x,) and f(x,) exist. And f'(x,)= f1(x,)= f"(%,).

Theorem 3.2 (the necessary condition for existence of a finite derivative at a
point).

If a function f(x) has a finite derivative f'(x,) at x, , the function f(x) is
continuous at x, .

Corollary
If a function f(x) is not continuous at x, , the function f(x) has no finite

derivative at x, .

3.2. DIFFERENTIABILITY OF A FUNCTION AND DIFFERENTIAL

Def.: A function f(x) is called differentiable at x, , if Af can be expressed

as
Af = A-Ax+o(Ax), (3.2)

in a neighborhood U(x,), where 4 is a finite constant, not depending on Ax,
o(Ax) is an infinitesimal of higher order than Ax as Ax—0: limo(Ax)=0 and

Ax—0
fim 2(2%)

Ax—0  Ax

=0.

Def.: The first term in (3.2) which is a linear function of Ax is called the
differential of f (x) The differential is denoted as df. Other notations for

differential as dy(xo), dy(xo, Ax), d f(x,). are also used.

Thus (3.2) can be rewritten as Af =d f +0(Ax), Ax > 0.
Theorem 3.3. (the necessary and the sufficient conditions for differentiability
of a function)
A function f(x) is differentiable at x, if and only if a finite derivative f'(x,)
exists, and
df(x)=r"(x)-dxor df=f"dx, (3.3)
where dx = Ax .

Remark 3.3
1. dx=Ax ismetonly if x is an independent variable.
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2. The given above theorem is still true even if x, is one of the endpoints of a
closed interval. But, in this case, f '(xo) should be replaced with a one-

sided derivative.
Def.: The process of calculating derivatives and differentials is called

differentiation.
Def.. A function f (x) 1s called differentiable on an interval X if the function

f(x) is differentiable at each pointin X
Example 3.1. Verify that the function f (x) = x 1is differentiable for all xeR.
0 According to (3.1) for some point x e R we have

£(%)= lim 2~ tim fx+a0)-(x)

A—0 Ax A0 Ax (3 4)
= lim f(x+Ax)—f(x) = limw=l<oo.
Ax—0 Ax A0 Ax

In (3.4) x can be any real number, so the derivative f’(x) of the given
function y=x exists and it is finite for all x € R. Then according to theorem 3 the
function y=x is differentiable for all xe R. And (3.3) implies df =dx for all

xeR.m
Geometrical interpretation of a derivative
Consider the “finite derivative” case. Let f(x) be a function, that is
continuous in a neighborhood U (x,) of a point x, and has a finite derivative at x, .
Let Mo(xo,f(xo)) and M(x0 +Ax, f(x, + Ax)) be two points that are located on the

graph of the given function f (x) . Draw a secant line S passing through these

points, as shown in pic. 1.

Ay
M the secant line §
Ay ,
K|_— the tangent line
y=f(x) $dy
M, 5
/
A(p/ Ax
0 xo X0 + Ax 3‘
Pic. 3.1
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Let ¢ be an angle between the secant line S and the positive direction of the
x-axis. Draw a straight line that is parallel to the x-axis and passes through A .
Denote the point of intersection of the straight line and the vertical line with x-
intercept x = x,+Ax by N. The angle ¢ is equal to ZMM N. Obviously, if f(x)
is an increasing function, then Af =MN and Ax =M N.

As Ax — 0 moving along the given curve the point M gets closer and closer
to M,. The secant line S =M M tends to occupy the position of the straight line
MK . The straight line M K 1is called a fangent line to the given curve at M,

The slope of the secant line S denoted by kg , is equal to tan(z MM N ):

k, =tan@, where tan = i—f The slope of the tangent line M K denoted by % , can
X

be defined as follows:
k= 1im£:k=f’(x0)=tanoc.
Ax—0 Ay

Hence, the value of a derivative | '(xo) is equal to the slope of a tangent line.

The point K (x,; y, ) is a point of intersection of the tangent line M K and the
vertical line x=x,+Ax, so xg=x,+Ax and y,=f(x,)+KN, where
KN =M N -tana=Ax-f'(x,)= f'(x,)dx. By (3.3) KN =d f(x,). Thus, the value
of the differential df(x,) is equal to the increment of the ordinate of a tangent
line to a curve y = f(x) at x,.

Let f(x) be continuous at x, . Assume, that f(x) is not differentiable, but
has finite one-sided derivatives f’(x,) and f/(x,) at x,, that are not equal
F(x,) = £1(x,). So, only one-sided tangent lines, the left-hand tangent line and the

right-hand tangent line, can be passed through the point (xo, f (x0 )) The slopes of

these one-sided tangent lines are equal to f”(x,) and f;(x,) respectively.

Example 3.2. Consider the function AV
y=|x|. This function doesn’t have a left-hand right-hand
derivative at the point x=0 . But the given tangent line | tangent ling
function  has  one-sided  derivatives
y.(0)=-1 and y,(0)=-1 at this point. So
the half-line y=x, x>0 is both a part of the y=|x|
graph of the given function y= | x| and the

right-hand tangent line. By analogy the half- 9
line y=—x, x<0 is the left-hand tangent

line (see pic. 3.2).

“V

Pic.3.2
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Example 3.3. Calculate f'(2) if the tangent line to the given curve y=f(x)
at the point (2; f (2)) intersects the x -axis at the point 4(6;0) and the y -axis at
the point B(3; 0) as shown in pic. 3.3.

0 The slope & of the tangent line at the point (2; f (2)) is equal to 1"(2).

The tangent line is a straight line, passed through the points 4 and B. Then
f=24" VB :O_3 _ 3

=——=-0,5m
X,-x, 6-0 6
Ay
PR
\o\ R
ol 2 (6; x

Pic. 3.3

Consider the “infinite derivative” case. Let f(x) be continuous on a closed
interval [a,b] and have infinite derivatives at points x,ef[a,b],i=0,..,3:
f'(x,)=c0. Then, vertical lines x =x, are tangent lines to the given curve y= f(x)
at points (x,, f(x,)),i=0,...,3.

In pic. 3.4 there are shown vertical tangent lines at points (xl., f (xl.)), i=0,..,3
for the following values of one-sided derivatives:

a) ['(xy)=fl(x,)=+00; b) f/(x,)=f!(x,)=—0;

c) f_'(xo)=+oo;f+'(x0)=—oo; d) f—'(xo) '

—0, f+(x0)=+00,

A)Y

Pic.34

62



Differentiation rules
Any elementary function y= f(x), xe X has a derivative f'(x) at each point
xe X . Note, f'(x) is an elementary function as well. The table of derivatives of a
few basic elementary functions is given below.
The table of derivatives

€)= O,’ ¢ = const (sin"1 x) = (arcsin x)' __ .
(xn) =n.xn—l ' 1-x
' (cos'lx) =(a:rccosx)' 1
(ax) =a’-lna, a>0 1-x2
(ex) =" (tan‘lx) = (arctan x) =
' 1 ' . 1
= 0 1; -1 — - _
(log, x) PRTPRLEA e (cot x) (arccot x) o
(Inx) _L (shx) =chx
X '
(sin x)' =COSX (chx) = Slllx
(cosx)' =—sinx (thx) = hix
' _ 1 , B 1
(tanx) = e (cthx) =- e
(cotx) - sin® x

Theorem 3.4 (The Sum Rule, The Difference Rule, The Product Rule, The
Constant Multiple Rule, The Quotient Rule)
If functions u=u(x) and v=v(x), defined on a neighborhood of a point x, ,

are differentiable at x, , then the sum, the difference, the product and the quotient of
these functions will be differentiable at this point x, too . The corresponding rules
are listed below.

For derivatives: For differentials:
The Sum Rule

u+v)=u+v du+v)=du+dv
The Difference Rule

u-v)Y=u -V du-v)=du—-dv
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The Product Rule

(u-v) =uv+u' du-vy=du-v+u-dv

The Constant Multiple Rule

(Cu) =C-u', C=const d(Cu)=C-du, C =const
The Quotient Rule
(Z] =M, v(x,) #0. d(£]=du'v_2u.dv,v(xo)¢0.
1% v v 1%

Physical interpretation of a derivative

Let S(¢) be a distance between a position of an object at the moment of time ¢

and a position at ¢+ At. It is assumed, that the object is moving rectilinearly. The
average velocity v(t) during the time interval [¢, ¢ + At] is defined by

n AS
H="—"2,
(1) 7

where AS=S8(t+At)—-S(t) . The velocity v(t) or the instantaneous velocity of the

object at the moment of time ¢ can be defined as the limit of the average velocity as
At—0,1.e.
A . AS
MO= I O= AT
So accordingly to the given above definition the velocity v(¢) at the moment of

time ¢ is equal to the derivative of the distance S(#) with respect to time 7, i.e.

v(t)=S'(t).
As we know by (3.3) the deferential dS(¢) can be written as
dS()=S"(t)Ar .
Assume that the object is moving rectilinearly with the instant velocity S'(¢).

Then dS(¢) is a distance travelled by the object during the time interval [z, ¢ + At].

Let f(x) is a function defined in the interval [x, x + Ax]. The mean rate of
change of the function f(x) is

ﬁ(x)z%.
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The instantaneous rate of change can be expressed by

i nn i A
v(x)= }}cglo v(x) = Alalcr—{loE '
Obviously, according to the definition v(x) = f'(x).
By analogy, we can define acceleration a (¢) of the object as the derivative of

the velocity v(¢) with respect to time ¢, i.e.

a()=v'(t).
Remark 3.4
If we need to find a derivative f'(x) at a given point x,, then we should
e find the derivative f’(x) at an arbitrary point x, where x is in the domain of
J(x);
e substitute x, for x into the obtained result.

If we don’t need to find specific value of the derivative, we just define the
derivative at an arbitrary point.

Example 3.4. Find the derivative 7* and the differential df , if f =/x*.
O Using the table of derivatives (position 2), for n = A we have

!

! 2 Ya 2 -y 2 1 2 1 2dx
32 =(x%) _2. A =—-xA=—-—=—-—;d%/x_2 Y
( ) 3 3 34 3 3x W) 3352

Example 3.5. Find the derivative /' and the differential df , if f =2"
O By the table of derivatives (position 3), for a =2 we get

(27) =2"-In2. Then, d(2*) =2 In 2dv.m

Example 3.6. Find the derivative f” and the differential df , if f =log, x
O Applying the table of derivatives (position 4), for a =3 we have

1 dx
log,.x) = . Conse tly, d1 = )
(logsx) =53 e 08 = s

Example 3.7. Find f'(x) if f(x)=(x-1)e".

O Using the Product Rule (see theorem 34),
f'(x)=((x-1)e")Y=(x=1)-e"+(x=1)-(e"). Then by the Difference Rule and the
table of derivatives we can write (x—1)=x'-1=1-0=1; (1))=0; (") =¢". Hence,
fix)=l-e'+(x-1)-e"=e"(l+x-1=¢"-x.m
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Example 3.8. Find a velocity v(¢) at ¢ =10, if the distance S(f) = 3t +41-5,

o We know, v(10)=S"(10) . So by the Sum and Constant Multiple Rule (see
theorem 3.4) and also the table of derivatives, we get

v(10) = v(t)|,=1o =S '(t)|r=10 - (3t2 +4t - 5)'|t=10 -
]
=6t+4|t=10 =6-10+4=064.

3.3. DIFFERENTIATION OF A COMPOSITE FUNCTION. CHAIN RULE

Theorem 3.5 (Chain rule)

If a function u= g(x) is differentiable at a point x, and a function y=f(u) is
differentiable at a point u,, u, = g(x,), then a composite function y=f(g(x)) is
differentiable at the point x, . And its derivative is defined by

(fEO) |, = (@) |smr, - (8)) |, 08 Fi= 17t
We can also write d—f =ﬁ ili
dx X=Xy dll U=, dx X=Xy

In other words, to differentiate a composite function we need:

e to identify an “outside function” and an “inside function™;

e to differentiate the “outside function™ leaving the “inside function™ alone;

e to multiply the derivative of the “outside function™ by the derivative of the
“inside function™.

Example 3.9. Use the Chain Rule to differentiate f(x) = sin/x .

O Let’s represent f(x)=sinx as f(g(x))=sing(x), g(x)=+/x. Therefore, the
“outside function” is f(u)=sinu, the “inside function” is g(x)=/x . Evaluating
derivatives of each of them and using the Chain Rule, we get

(f@) = (sin(u))' = cos(u),(g(x))' = (\/;)' = 2\1/; ,

! ! a cos\/;
(f(g(x) =(f@) - (g(x)) = "
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Example 3.10. Find the differential of a composite function y=f(g(x))
O By the definition df = ( f (g(x))) dx . According to the Chain Rule we can

wite df =(f(w) - (2(x)) dx. As (g(x)) dv=dg(x)=ju=g(x)|=du we have
df =(f@)) du or df=f-du.m

Thus, the form of the differential doesn’t depend on whether the argument of a
function is an independent variable or a function of another argument.

3.4. DIFFERENTIATION OF AN IMPLICIT FUNCTION

Let y=y(x) be an implicit function defined in D. It means, that y(x) is the
solution of the equation F(x, y)=0, which describes the functional relationship
between an independent variable x and a dependent variable y. In other words,
substituting y(x) for y in I'(x, y)=0 we obtain the identity F(x, y(x))=0, which

is true for each xe D.
Assume, the function y(x) is differentiable on D. In this case, to find y'(x) it

is necessary to differentiate both sides of the equation F(x, y(x))=0 with respect to
x and then to solve it for y'(x). In addition, by (3.3) dy can be evaluated as
dy =y'(x)dx .

Example 3.11. Assuming that the equation x+ y+In(y—x)=0 determines a
function y(x) such that y = y(x), find )’ and dy.

O Let’s substitute y(x) for y in the given equation x+ y+In(y—x)=0. The
obtained equation is x + y(x)+ In(y(x)—x)=0. Then we differentiate both sides of
the obtained equation with respect to x:

(x+ y(x) +In(y(x) - 1)) , =0,

L ey -n=0.

X)—Xx

(3.5)

I+ y(x) +
W
Further we will use )’ instead of )'(x). Now we need to solve (3.5) for y':

. x—y+1
y—x+1

x_y+1dx.l

By (3.3) dy=y'dx, thus dy =
y=x+1
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3.5. DIFFERENTIATION OF AN INVERSE FUNCTION

Theorem 3.6.
Let y= f(x) be a strictly increasing (decreasing) continuous function on a

neighborhood of a point x,. Suppose, f(x) is a differentiable function at the point
x, and f'(x,)# 0. Then the inverse function x= ' (y) exists and is continuous and
strictly increasing (decreasing) on a neighborhood of the point y,= f(x,). Moreover,

the inverse function x=f~'(y) is differentiable at the point y,=f(x,) and its
derivative at this point equals

S0, =

,1 or X, =—-.
f ('xO) yx
Example 3.12. Find )’ if y=sin" x.

0 To find the derivative we use the above theorem . Notice, that functions

y=sin"'x,xe[-1,1] and x=siny, ye [—g,g} are mutually inverse. By theorem

1 o
3.6 x, =—. We can rewrite it as ), =L,. So for x e (—1;1) we get
Vs X,

(sin" x) = ! ! 1 = ; =

(siny) cosy _(+,/1—sin2y) 1-x*

3.6. LOGARITHMIC DERIVATIVE

Let y= f(x) be a function, which has positive value at a point x,. Moreover,
f(x) is differentiable at this point.

Def.: The derivative of the natural logarithmic function of f(x) at the point
x, is called the logarithmic derivative of the function f(x) at this point. The
logarithmic derivative is evaluated with the Chain rule:

(i f () |y =22

(%)
Hence, the derivative of a function is related to the logarithmic derivative of
this function as follows f'(x,) = (Inf(x))|,_, - /(%)

Using the logarithmic derivative differentiating the listed below functions can
be simplified:

a) (u(x)",
b) u (%) u,(x)..u, (x),
(%) 15(X)...u (%)

V(X)) v, (). v, (x) '
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Algorithm of differentiating functions by use of the logarithmic derivative

1. Find the natural logarithmic function In 7 (x) whose argument is a given
positive valued function f(x) . Simplify the obtained result with logarithm

properties.
2. Find the logarithmic derivative (In £(x))".

3. Find the denvative f'(x) by f'(x)=(Inf(x))- f(x).

Example 3.13. Find f' if f =(x*)"*

0 We can represent the given function as f = (x*)"* = (u(x))"®. So, according
to the above list of functions we can find the derivative by the algorithm:

I. Find Inf: Inf-= ln((x2 )lnx) . Using the logarithm property:

Ina”=b-Ina,weget Inf=Inx-In(x*)<In f =lnx-2lnx < In f =2(Inx)>
2. Find the logarithmic derivative (In /)" with the Chain rule:
' 1 4lnx

(Iny)'=(2(nx)*) =2-2nx-~= .
X X

3. Find the derivative f'(x): f'=(nf)-f= f'= __4lnx-(x2)1nx. =
X

3.7. DIFFERENTIATION OF A PARAMETRIC FUNCTION

Let a functional relationship between variables x and y be represented

parametrically, 1.e.
x=0@), y=y(), teT.

Theorem 3.7.
If functions ¢(t) and y(t) are differentiable at t,e T and ¢'(t,)#0, then the

Junction y as a function of x is differentiable at x,, x,= ¢(t,) and the derivative '
at x, is defined by

: « P
Yy =L gy

x r "

P'(t,) X
Example 3.14. If x =1+ cos?, y =sint , find ? at t= % :
X
o0 First we find the derivative as a function of ¢
ﬂ:y; = (sin) = CO.SI =—cot?.
dx (1+cost)’ (—sint)
. T dy T
Then,if t=—, —=-cott] ,=—cot—=—-1. m
4 dx r=— 4

4
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3.9. TANGENT AND NORMAL LINES TO A CURVE

The problem is to get equations of a tangent line and a normal line to a given
curve I at a point M(x,,y,)el.

If a function, which represents the curve I', has the derivative at the point M ,
then both the tangent line and the normal line exist. Equations of these lines are
uniquely determined by three parameters:

i
X,, ¥, and y,

where x,, y, are coordinates of the point M which lines are passed through, y; is

T : :
the value of the derivative Ey at the point M . Notice, y; equals the slope of the

tangent line.
Let’s consider the following cases:

1. The curve is represented by y = f(x). Then y, = f(x,), vy =/"(x,).
2. The curve is represented by x=o¢(¢), y=wy(¢) . Then

' (t
% =0(,), Y=y, v =Lls)
0'(Z,)
Remark 3.5
1. If we don’t know x, or f,, we need to find them from the problem
formulation.

2. The parameters x,, ¥, and y, can be tabulated as shown below

Table 3.1

!

X0 Yo Yo

The form of tangent line’s and normal line’s equations is determined by the
value of y,.

The following cases can be distinguished:
1. If y; #0 and y, # o, then the equation of the tangent line is

y=Y, +¥,-(x—x,) and the equation of the normal line is y=y, —L,(x—xo)
0
2.If y, =0, then the equation of the tangent line is y = y, and the equation of

the normal line 1s x = x,.
3.If y, =o0,then the equation of the tangent line is x = x,,, the equation of

the normal line 1s y=y,.
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Remark 3.6

In the first case both the tangent line and the normal line are oblique lines, in
the second case the tangent line is a horizontal line and the normal line is a vertical
line, in the last case the tangent line is a vertical line and the normal line is a
horizontal line.

Example 3.15. Find equations of the tangent line and the normal line to the
curve y=-</x at two points: a) x =L b)x,=0.

0 a) To get the desired equations we should determine three quantities:
X,, ¥, and y;. According to the problem formulation x ,=1. To find y, we should

substitute x, in the given function: y,= f(x,)=23[x, =1. Then differentiating /x
with respect to x and substituting x, in the obtained result, we have

(] 1
x=1 3

x=1

!

¥y = £'(x) = (V)

x=1

We deal with the first case, when y; #0 and y # . Thus,
1

the equation of the tangent line is y —1= g(x —1) or y= %x + E;

the equation of the normal lineis y—1=-3(x—1) or y=-3x+4.
b) For the second point x ;=0,s0 y, = f(x,)= Jo=0,
1
Yo=1"(0)=
° 35|,

the equation of the tangent line is x = 0; for the normal line, we have y=0. m
Example 3.16. Find the tangent line and the normal line to the curve

= . We deal with the third case, when y; = . Therefore,

x=1+cost, y=sinf at points: a)¢, =§; b) y,=-1;¢)x,=2.

O Notice, the given curve x =1+ cost, y =sint is a circle with center at (1;0)
and radius 1. Indeed, rewriting the equation x =1+ cost in the from x —1=cos¢ first
and then raising the given parametric equations to R
the second power with adding the results together y
after, we get

L (x=1)" =cos’t <nd e o
y* =sin’t 0 e

[
cecce=dg

o]

(x=-1)*+3y* =1

The last equation is a canonical equation of a Pic. 3.5
circle with center at (1;0) and radius 1 (see pic. 3.5).
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We can use the result of example 3.14: dy =—cott .

dx

' L .
a) Evaluate x,, y,, Vi tozzz X ,=1+cos—= Vo =SIn—=——

Vo= —cot§= —1. The derivative y;=0 , so we deal with the first case. Fill in

the table 3.2

Table 3.2
'xO yo y:)
2442 V2 -1
2 2
Thus, the equation of the tangent line is y= Q—l -(x 2 +2ﬁ]

2

y=—x+1+ V2 ; the equation of the normal line is y = 7+ 1 (x -

2

2+\/§]

or y=x-1.

Coordinates of the point which both lines pass through are (

242 , ﬁ

2 72 )

b) In contrast to the previous case we have only y-coordinate of the point, not the
value of variable 7. So to find ¢ it’s necessary to solve the following equation

. T
sint=-1 < t0=—5+27cn, neZ. Hence, x,=1+cost,=1, y',=—cott,=0.

V',=0, so we deal with the second case. Then the equation of the tangent line
i1s y =—1; the equation of the normal line is x =1. Both lines pass through the
point B(1;—1).

c) Now we have only x-coordinate of the point. By analogy with the above case
solve  the equation 2=1+cost<cost=1<1,=2nn, neZ. Then
Y, =sint (=sin2nn =0, y, =cot t,. Notice, the value of y; isn’t defined. But
we can determine it as limcot?,=o. We deal with the third case. The

1t
equation of the tangent line is x =2; the equation of the normal line is y=0.
Both lines pass through the point C(2;0). m



Exercises

1. Find f'(x) ,if
2) f(x)=\/;—§+%; d) f(x)=e"Insinx;
X X ) f(x) _Incosx
b) f(x)=x"log,x; ~ cosx
L 1= 3 2 f) f(x)=1n(e2x+1)—2tan‘1ex.
C X)=In} it
) f( ) (1+3x]
2. Find % , if the function is represented parametrically:
x=2co0st, X =sint,
a) {y=sint; {yza’;
2tant °
X = , o
b) {y =2sin’7 +sin 21, N {36/; Sclgstit
3. Using the logarithmic derivative find f '(x) ,1f
a) y=19" x*, c) y=x' 2%
b) y — xeCOtx; d) y — xeCOSX .

4. Find the equation of a tangent line to the curve y=x”—2x perpendicular to
the line 3x+y-2=0.

5. Find the equation of a tangent line to the curve y*=20x that makes the
angle % with the x - axis.

6. Find the equation of a tangent line to the curve y = 5x— x” if the tangent line
is parallel to the line passing through two points: (1,11), (-2,2).

In exercises 7,8 a student’s number and the last numeral in a group number
should be taken for m and » respectively.
7. Find derivatives ', if

1
a) y= n(”;’lx-i‘n)
X +n
b) y=xmx2+n;

0 x=t§+nt+1,
y=t +mt+].

8. Find the tangent line to the curve y=x’+nx+1, if the tangent line is
parallel to the line y=2x+3.
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3.10. THE MAIN THEOREMS OF DIFFERENTIAL CALCULUS

Let a function f(x) be defined in a neighborhood of a point X, .

Theorem 3.8 (Fermat’s Theorem). .
If the function f(x) has the largest value at the point x, and is differentiable

at this point, then f'(x,)=0.

This statement can be formulated in another way. But some terms must be
defined first.

Def:: f(x,) is called a local maximum (minimum) of f(x), if there exists
aneighborhood of the point x, such that f(x)> f(x,) (f(x)<f(x,)) for all x in

this neighborhood.
Def.: A local minimum or a local maximum of the function f(x) are called

local extrema of f(x).

Remark 3.7
We use the term “local” to underline that we deal with a small open interval
A such that f(x) takes the largest (smallest)
Y value. If f(x) takes the largest or smallest
value on some set X , then these values of
/ i \ v=f(x) f(x) are callgd global extrema.
| N ' R According to the definitions above
|x0 0 | X, " the Fermat’s Theorem can be formulated as:
| ¥ if the differentiable function f(x) takes a
| .
Pic. 3.6 local extrema at the point  x,, then

J'(%)=0.

In pic. 3.6 the geometrical interpretation of this theorem is shown: the
function has local maximum at the point x,, and local minimum at the point x. We

can see that tangent lines are parallel to x-axis at these points, because their slopes
are zero: k, = f'(x,)= f'(x,)=tan0=0 Thus,

a tangent line to the graph of the function f(x) is parallel to the x-gxis at points
where the function has local extrema.

Theorem 3.9 (Rolle’s Theorem).
Let a function f(x)

a) be continuous on a closed interval [a,b];

b) be differentiable on the open interval (a,b);

¢) attains equal values at endpoints of [a,b]: f(a)= f(b).
Then, there exists at least one point ¢ in (a,b) such that f'(e)=0.
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The function f(x) presented in pic. 3.7 satisfies all hypothesis of the Rolle’s
Theorem. The derivative f(x) is equal to zero at points ¢, and ¢,. So .th.e 'tangent
lines at each of these points are parallel to x-axis and the chord A5, joming two

points (a, f(a)) and (b, f(b)).

Pic. 3.7

Geometrical interpretation of the Rolle’s Theorem: if a function f (x) satisfies

all hypotheses of Rolle's Theorem, then there is at least one point on the graph of
S (x) such that a tangent line to the graph at this point is parallel to the x-axis.

Theorem 3.10 (Cauchy’s Mean Value Theorem, extended Mean Value
Theorem).

Let functions f(x) and g(x)
a)  be continuous in a closed interval [a,b];
b)  be differentiable on the open interval (a,b);
©) g(x)=0 for all xe(a,b).
Then, there exists at least one ¢ in (a,b) such that

f(b)—f(a)zf'(C) <
gb)-gla) g'(c)’

c<b,

Remark 3.8

The Cauchy’s Mean Value Theorem is used to
Mean Value Theorem given below is the coroll
Theorem.

Theorem 3.11 (The Mean Value Theorem).

Let a function f(x)

a)  be continuous on a closed interval [a,b];
b)  be differentiable on the open intervql (a,b).

prove other main theorems. The
ary of the Cauchy’s Mean Value

Then, there exists at least one ¢ in (a,b) such that f (€)= M Hee<h

> c .

Following the Mean Value Theorem, 1 b)~ f(a) = o) b(; a |
(h=-a).
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Remark 3.9
If we denote Xx,=a, x=x,+Ax=b, c=x,+6-Ax, where 0¢(0;1) and
Ay = f(x)— f(x,), then the Mean Value formula can be rewritten as

Ay = f'(x, +0-Ax)-Ax.

Geometrical interpretation of the Mean Value Theorem: if a function f(x)

satisfies all hypotheses of the Mean Value Theorem, then there is at least one point
on the graph of f(x) such that a tangent line to the graph at this point is parallel to
the chord AB, joining two points (a, f(a)) and (b, f(b)).

Actually, in pic. 3.8 tangent lines at two

A points ¢, and c, are parallel to the chord 4B.
Y B . b) -
L/ The quotient w is equal to the slope
—-a

of the secant line 4AB. We know, that slopes of
parallel lines are equal. Hence, the Mean Value
formula follows.

Example 3.17. Prove that the equation
A f/'(x)=0 has three different real roots, if

Pic. 3.8 £(x)=x(x+1)(x+2)(x+3).
o Since f(x) is a polynomial it is continuous and differentiable on R.

Moreover, f (x) takes the zero value at the points: —3,-2.—1,0, that are roots of the

/a

)

N
=~
=v

o (o)

given polynomial. Let’s prove that f '(x)=0 has a root in the interval [-3;-2].
f(x) satisfies all hypothesis of the Rolle’s Theorem on [-3;-2]. Indeed, f(x) is
continuous on [-3;-2], differentiable on (-3;-2) and f(-3)=/f(-2)=0,
Consequently acoording to the Rolle’s Theorem there 1s a point ¢ € (—3;—2) such that
I '(c)=0. In a similar way we can prove that there are two more roots of the

equation f'(x)=0: one of them is in (-2;—1) and the other one is in (-1,0) m
3.11. HIGHER-ORDER DERIVATIVES AND DIFFERENTIALS

Higher order derivatives

Let y= f(x) be an explicit function, which has a finite derivative y'= f"(x)
at every point x in an interval X . If f'(x) as a function of x has a derivative with
respect to x which may be finite or infinite at every point x, xe€ X, then this
derivative is called the second derivative of f(x) and denoted by

V'=(f"(x)) or y'=f"(x).
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In like manner, if f"(x) as a function of x has a derivative for all
xe X (Vx e X), then this derivative is called the third derivative and denoted as

() =("(x).

And so on, we use this way to obtain other higher order derivatives.
In general, if there exists a finite derivative of order (n—1),

Y = O V(x), Vxe X, then the nth derivative can be defined as a derivative of
the (n—1) st derivative:

Y= (TP 0) =7 ().
Obviously, if n=0 we deal with the given function, i.e. fP(x)=f(x). If
n>2 (n=2;3;...), derivatives are called higher order derivatives.

(n) d"y df(x)
T dx"’ dx”

The following notations for the nth derivative: f™(x), y

used.

Remark 3.10

1. If the order of a derivative is known, for example, we need to find the
second derivative, 1.e. n =2, then either Roman numerals without brackets or Arabic
numerals within brackets can be used in notation for the required derivative. Using
primes is also acceptable but for the second and the third derivatives only:

yn _ y(z)
=y" :y
y

\< \< =
3

2. If the n-th derivative of f(x) at x, exists, then its value at this point can be
denoted in the following manner:
d"y
dx”"

d f(xo)

y(n) (XO), f(n)(xo)’ ( 0)

Proposition 3.1.
If the nth derivative of f(x) is finite at x,, then there is a neighborhood of x,

where both f(x) and its first (n — 1) derivatives are defined and continuous.

Remark 3.11

1. Proposition 3.1 can be proved by use of the necessary condition for
existence of a finite derivative of a function.

2. Higher order derivatives at endpoints of a closed interval are determined via
one-sided derivatives of an appropriate order.
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Remark 3.12
1. The first derivative )’ of the linear function y=kx+5b is equal to the

constant k, i.e. y'=k. All derivatives of order greater than one, the second
derivative, the third derivative and so on, are equal to zero:
Y'=y"=..=y"=0,n22.

2. The first derivative y' of the quadratic function y =ax”+ bx+c is a linear
function y'=2ax+b. The second derivative y" is a constant: y"=2a. So all

derivatives of order greater than two are equal to zero: y" =...= y =0,n>3.

Thus, in general it can be proved that all derivatives of order greater than » of

a  polynomial of degree n Q. (x) are identical to  zero:
() (n+2)

(0,(0))" =(0,(0)" ™ =..=0 VxeR.
Example 3.18. Derive the formula for the nth derivative 3, if y =In(1+ x).

0 We need to differentiate recursively for finding a pattern. For x>-1 we
have:

y, = (ln(l +X))' :14_%: (1+X)_1;

YV'=0)=(@+x)7Y =(=D-+x)7
Y'=(") =((-D- 1+ 0) 7Y =(=D-(-2)- A+ x)7;

Y = (=1 (=2)...-(-n+1)-(1+x)" = D™ -1)! .
1+ x)"

_ n—-1 1\
The final formula is (In(1+ x))™ = D" (=) ,heEN. m
(1+x)"

Example 3.19. Show that the function y=C,x’ +C,x+C, is a solution of the
differential equation xy" —y"=0.
0 To get the answer we can use the following algorithm:

1. Find first three derivatives: y'=3Cx*+C,, y"=6Cx, y" =6C,.

2. Put the obtained derivatives into the equation: x-6C, —6Cx=0<0=0. We
have the identity which holds for all xe R.

Hence any function of the form: y =C,x* +C,x + C; is a solution of the equation
xy"=3"=0. =

Physical interpretation of the second derivative

Let S(¢) be a distance, traveled by a point during time ¢ . Earlier we defined an
acceleration a(t) of an object as the first derivative of a velocity:

a(t)=v'(t).
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Hence, since v(t)=S'(), the acceleration is equal to the second derivative of S(7)
with respect to time 7 :

a()=(S"(0)'=5"().

The acceleration is one of basic characteristics of the motion. If the
acceleration is equal to zero over time interval, then such a motion is called a
uniform motion. If the acceleration is a positive constant over given time interval,
then this motion is called uniformly accelerated motion. If the acceleration is a
negative constant over time interval, then the motion is called uniformly retarded
motion.

Example 3.20. Find the acceleration of the point, if its motion is represented by

S(t) =3t +4t-5.

o Applying a(t)=(S'(t)) =S"(¢), wehave S'(t)=6t+4 = a(t)=(S'(t))' =
=(6t+4) =6. Thus, the acceleration is a positive constant, so we conclude the
motion is uniformly accelerated motion. m

Higher order differentials

Let y = f(x) be a function which has first » finite derivatives at each point of
an interval X'. We know

d f(x)= f'(x)dx. (3.6)

d f(x) is called the first differential or the differential of order one. The value
of the first differential at x = x, 1s

df(x) = f'(x,)dx

The differential of the first differential is called the second differential or the
differential of order two of f(x) at x,:

d* f (x,) = d(df (x))

If we think of df (x) as a function of the independent variable x and use (3.6), we get

X =Xy

d(df (x)

oo =)

ey = ([ () dx)’

X=X, ) dx = f”('xo)dxz -
Hence, we have
d*f(x)) = f"(x,)dx*.

If x is any point in X, then d’f(x)= f"(x)dx* or d’y=y"-dx*. Therefore,
, d’
Y=g

dx
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the differential of the second differential is called the third differential or the
differential of order three of f(x) at x,:

& [(x)=d(df ()] _ -

By analogy, if x is an independent variable, then

dd*f(0)| _, =(d* ()|, v =(f"(x) k)

oy 0= [ (x)

In this manner, the differential of the (n—1)st differential is called the nth
differential or the differential of order n of f(x) at x,:

d"f(x)=dd" () _ .

Summarizing the obtained results, we get the connection between the nth
derivative and the nth differential:

d"f(x,) = £ (x,) " 3.7)

We can rewrite it as:

d"y=y" .dx".
d’y

n

So we have the notation for the nth derivative written in

Hence, y™ =

terms of differentials (Leibniz notation).

Remark 3.13

In contrast to the notation for the first differential given by (3.6), the notation
for higher order differentials (n>2) depends on how we treat x as an independent

variable or a function.
Def.:  Suppose a function  f(x) is such that derivatives

£, 1), f7(x),.., f7(x) exist at x,. Then f(x) is called n-times differentiable
at x, .

Def.: A function f(x), which is n-times differentiable at each point of an
interval, is called » -times differentiable on this interval.

Example 3.21. Find the third derivative y” and the third differential 4’y , if
y=¢e*(x-3). Calculate y" and d’y at x =3.
0 Differentiating recursively we get

y=("(x-3)'=e"(x-3)+e" - 1=€"(x-2),
yi=(e"(x-2))'=e"(x-2)+e" =e"(x-1);
y'=(e"(x-1))'=e(x—-1)+e" =e'x.
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Then, by (3.7) for n=3 we have d’y = y"(dx)’ = e"x (dx)’.
Substituting x =3 gives us
y"(3)=3¢’,

d’y(3) =3¢’ (dx)’.

Note, the third derivative at x =3 1is a constant, but the third differential at this
point is a function of dx.m

Higher order derivatives of a function represented parametrically

Let a function y as a function of a variable x be defined by parametric
equations:
x=0(1), y=vy().

If functions ¢(¢) and w(r) have higher order derivatives at a point ?,, then
there exist corresponding higher order derivatives of the function y with respect to x
at this point and these derivatives are defined by:

" !

dzz/:(y%); or y:rcx=yt';x;_‘x;ttyt’
dx X (x')

f t

(3.8)

where x; ='(¢), x;=0"(0), ¥y =v'(®), y;=v"().
For the third order derivative we have

a’y_ (e
dx>  x

In this manner, we can evaluate derivatives of any order of a function
represented parametrically.

Example 3.22. Find )’ _, if the function y(x) is represented by the parametric

x =1+ cost,

equations: { y = sint.

0 According to the result of example 3.14 y! =—cot?. Applying (3.8), we get

L0 (oot I

= = — ——=——— n
= x (I+cost), sin’t-(—sin¢) sin’ ¢
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3.11. APPLICATIONS OF DERIVATIVES. L’HOPITAL’S RULE

0
Theorem 3.12 (L’Hopital’s Rule, the 0 case).

Let

1) functions f(x) and g(x) be defined and differentiable on a punctured
neighborhood of x,,;

2) lim f (x)= lim g(x)=0;

3) lim=——= /() exists.

=% g'(x)
Then,
p S )
=ug(x) o gl(x)

Theorem 3.13 (L.’Hépital’s Rule, the had case).
0

Let
1) functions f(x) and g(x) be defined and differentiable on a punctured
neighborhood of x,;

2) lim f(x)=limg(x)=o0;
X=X, XXy

3) lim& exists.

x—)xo g'(x)
Then,
p SO )
x—>x, g(x) x—> X, g (x)
Remark 3.14

1. The L’Hépital’s Rule is applicable in the case when
a) x = x,, where x, 1s any real number;

b) x > ;
c) x> x,£0, x >0,
2. The L’Hopital’s Rule can be also applied to investigate indeterminate

forms such as [oo—OO], [1°], [07], [«"]. How we should work with the
. . . . 0
mentioned indeterminate forms to convert them into the 6 case or the had case
o0

is given below:

[0-0]. We have lim #-v =[0-c0]. Then, the product u-v is represented by the

x—>a

quotient:



)

0
u-v=[0-oo]= (ILV) 80 ,
©

(l/u)_

» [0 —]. We have lim u —v =[c0—o0]. If # 0 we can factor out u:

X—=>Xg
v
u-v=u-|l1-—|,
u

Orif v#0 we can factor out v:

u—v=v-(£—1j.
y

Then,
e if limZ exists and lim =4 =1, then lim(u —v)= llmu (1-A4)=w;
X=Xy u x—)xo u X=Xy
1Y
e V. . : o u o
e if lim— exists and lim—=1, then lim(z —v)= lim ==
x—>x Y x—>xy Y X=X X=X l O

u
Further, obviously we apply the L’Hopital’s Rule in straight forward manner.

X—>Xq

[1°],
> [17], [07], [«°]. We have lim u"= ho ]] Using the fact that /(x) ="/ we

get

lim #" = lim ™ —|1nu —vlnu‘—hme“‘”‘ = el

X=X, XXy x—>x,

To investigate the indeterminate form [O-oo] the L Hopital’s Rule is used as
described above.

\/x+1+%/x+8—3

. .

\/x+1+%/x+8—3_[9}_hm(«/x+1+3/x+8_3)'_
O x—0

Example 3.23. Find lirré

o hm

x—>0 X

'

X

1 7

__1 —
’“133[251 3J<x+8>] 1

Example 3.24. Find lim In ¥

x—0+0 COt x

&3



' o 2 -2
o lim Inx =|:£]: im (Inx)' _ lim Isin"x i S x=[9}_

x>0+0 cOt X 0 x—>0+0 (cot x)' x>0+ x. (_1) x>0+0  x 0
. 2 ' .
) sin” x . 2sinx-cosx
=—11m( )=—111’1’1——=O.I
x— 040 x' x—0+0 1

The L Hopital’s Rule can be applied as many times as functions under the limit

sign satisfy all hypothesis of the given above theorems.
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Example 3.25. Find lim (Inx)=.

xX—>+00

X—>+00 X—>+00 X—>+00

1 1 Inlnx (Inlnx)
0 lim (Inx)* =|:oo°:| = lim (elnlnx)x =lime * = [2} =lime * =
X—>+0 o0

1
Inx-x

=lime™*=¢"=1. m

X—>+00

Example 3.26. Find the following limits:

ln(2 J_ 2

2) lxlirll x—>0+0 lgx C)}Ll:[rlw?
13
O a) lim—————— ln(2 \/_ { } (In(@ \/_) =lim gx =
>l xP—x 0 = (x> = x) 31 (2—{/x_))(2x—1)
EEEER
b) lim ln_x:[i}: fim {0 iy L=ln10.
s>00]gx |0 | 040 (Igx) x_>0+0%-ln10

¢) hmz_z[f} tim G i 2 1n2:[£} o 272y

X—>+0 (xz)' xo+0 Dy o0 x—>+0 (2X)

. 2'In*2
=11 = o0 ]
X—>+00 2
. . X+sinx
Example 3.27. Find lim :
X—> 0 x
) . X+sinx
0 As x— o, the numerator and the denominator of the fraction
X



increase unboundedly. So we deal with the indeterminate form [ } Unfortunately,
o0

o : . ... (x+sinx) .. l+cosx
we can not use the L'Hopital's Rule: there is no limit lim g= lim ;
X—>+00 x X—>+0

>

because cosx as well as 1+ cosx have no limits at infinity. However, the limit
. X+sinx . :
lim ———— exists and can be found in another way:

X—> 0 X

X—>®0 x X—>0 x

the denominator. The limit of the second summand is equal to zero as the limit of a

lim 22 fim (1 +sin x - lj= 1. We should divide each term of the numerator by

product of the bounded function sinx and the infinitesimal function —, x -« (see
X

properties of infinitesimals). m
Exercises

1. Find derivatives of appropriate orders:
a) y(s) if y=(2x*-7)In(x-1);

b) " if y=1082% .
X

) YW if y=e"* sin2x.
2. Find y7, if y(x) is given by

X= cos2t

a) {y 2sec?;
b){ 1/(1+z 2.

—e cost,

) {y e'sint.

In the given below exercises a student’s number and the last numeral in a group
number should be taken for m and »n respectively.
3. Find the limits using the 1.’Ho6pital’s Rule:

. Innx , n
a)  lim ——; e) lim xe*;
x40 mMX x—0+0
. 1—cosnx L
b lim— & tim[ =)
=0 x-.sinx ] ;
i nx+1-~x+n* i o
c) 1m 2 > g) lim(x —n)
x—0 X —x x—a
2
X -nxl+x-n
d) lim— >

>ax’ —px’—x+n’
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3.12. APPLICATIONS OF DERIVATIVES. SKETCHING GRAPHS

Let f(x) be defined on an interval X .
Def.: f(x) is said to be increasing (decreasing) on X , if f(x)= f(x,)
(f(x) < f(x,)) whenever x; > x,, x, X, € X .
Def.: f(x) is said to be strictly increasing (decreasing) on X, if
f(x)> f(x) (f(x)<f(x,))whenever x; >x,, x, x, e X .
Def.: f(x) that is increasing or decreasing on X is called monotonic on X .
Def.: [ (xo) is called a local maximum (local minimum) if there exists a
neighborhood U(x,) of x, such that f(x)= f(x,); (f/(x)<f(x,)) for all x in
U(xy).
Def.: A local extremum is called either a local minimum or a local maximum.
Further we use just maximum (minimum) instead of a local maximum
(minimum).
Remark 3.15
If a function f(x) has a maximum (minimum) at x,, then the point
(xo, £ (x )) is called a maximum (minimum) point.

In pic. 3.9 there is shown the graph of f(x).

Sribeeaaaaao
=

W

=

N

b 4

o x x,

Pic. 3.9

Function f(x) is increasing on the intervals (—oo;x;], [x,; X3], [x,;%) and
decreasing on the intervals [x; x,], [x5; x,]. (%, (%)), (x5, f(x3)) are maximum
points, (x,,f(x,)), (x4,f(x,)) are minimum points. Obviously, if we have a graph

we are able to indicate, for example, intervals of increasing f(x), enough simply.

Proposition 3.2
A function f(x) is constant on X if and only if '(x)=0 forevery x in X .
J(x)=const Vxe X < f'(x)=0VxeX.

Remark 3.16
J(x)=const is a function which is both increasing and decreasing on R
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Theorem 3.14 (Increasing/Decreasing Test, the First Derivative Test for
monotonic functions).

If f'(x)>0 on X, then f(x) is strictly increasing on X .

If f'(x)<0 on X, then f(x) is strictly decreasing on X .

Using mathematical symbols, the above statements can be written in the form:
Ve X f'(x)>0=Vx,x,e X, x>, f(X3)>f(x).

Vxe X fi(x)<0 =Vx,x,e X, x,>x, f(x)<f(x).

Theorem 3.15
If a function f(x) has an extremum at a point x , then f'(x,)=0 or f'(x,)
does not exist.

Remark 3.17
“f'(x,) does not exist ” means that a finite derivative does not exist.

For example, f(x) has a minimum at the point x, and f"(x,)= (see pic.
3.9). f(x) has no finite derivative at this point. f(x) has a maximum at the point x,
and one-sided derivatives exist, but are not equal. So we get again that 7(x) has no
finite derivative at the point.

Def.: A point x, in X is called a critical point of f(x), if f'(x,)=0 or
f'(x,) does not exist. A point where f'(x,)=0 is called a stationary point.

Remark 3.18

A function does not always take on an extreme value at a critical point. For
example, in pic. 3.9 there is the point § such that f'(§)=0. But & is not a minimum
or maximum point.

Theorem 3.16 (The First Derivative Test for Extrema).
Suppose, x,e€ X is a critical point of f(x) and f(x) is differentiable on a

punctured neighborhood U(x,) of x,.

If f/(x)>0 for x<x,,xeU(xy) and f'(x)<0 for x>x0,xe(0](x0) then

(X9, f (%)) is a maximum point of f(x).

If f'(x)<0 for x<x0,xe(;(xo) and f'(x)>0 for x>x0,xe(;(x0) then
(X9, f(xy)) is a minimum point of f(x).

If f'(x)>0 or f'(x)<0 forall xe (j'(xo), then (x,,f(x,)) is not extreme
point of f(x).
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Theorem 3.17
Suppose,x,€ X is a stationary point of f(x) and derivatives

£, £1(x), f7(x),., f(x) exist in a neighborhood U(x,) of x,. Suppose,
J'(x)=r"(x0)=...= f(n_l)(xo) =0, and f(n)(xo) #0.

If n is an even number and " (x,)>0, then f(x) has a minimum at x,,.

If n is an even number and f (”)(xo) <0, then f(x) has a maximum at x,.
If n is an odd number, then f(x) has no extremum at x,.

Corollary (the Second Derivative Test for Extrema)

If 17(x,)>0 at a stationary point x, then f(x) has a minimum at x,,.

If 1"(x,)<0, at a stationary point x, then f(x) has a maximum at x,.
Remark 3.19

We use the Second Derivative Test for Extrema instead of the First Derivative
Test, when it is more difficult to investigate sign changes in f” at x,, than to find

higher order derivatives.

Algorithm for investigating a function for extrema and indicating intervals where the
function is increasing/decreasing

1. Find the domain D(f) of f(x).

2. Find f'(x).

3. Find critical points x, € D(f), i.e. points where f" =0 or f’ does not exist.

4. Use the First Derivative Test to determine extreme points and intervals on
which a function is increasing and decreasing.

5. Find extreme values of a function.
Example 3.28. Find extema of f(x) and intervals where f(x) is

increasing/decreasing, if f(x)= e .

O Applying the algorithm given above,

1. f(x) is defined, continuous and differentiable on R: D(f)=R.

2. f’(x)=—2xe_x2.

3. f/(x)=0 at x=0. Hence, x, =0 is a stationary point of f(x). Since f'(x)
is continuous on R there are no points where f'(x) is undefined (doesn’t exist).

4. f'(x)>0 for x<0 and f'(x)<0 for x>0 . Thus, according to the
Increasing/Decreasing Test f(x) is increasing on (—0,0) and decreasing on (0,+0) .
Moreover, moving across the point x=0 from left to right f'(x) changes from
positive to negative, so following the First Derivative Test for Extrema f(x) has a
maximum at x=0,

5 faax =f(0)=1. m
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Remark 3.20
We may use the scheme as shown in pic. 3.10 to examine behavior of /(x)

and find extreme points. The stationary
point x =0 divides the x-axis into two
intervals: (-00,0), [0.+00). TO determine
sign of /'(x) we may use a test point. The

test point is any point in the given

intervals. For example, the test point for Pic. 3.10

2 9
(-00,0) IS -1. Then, we calculate the value /'(-1)=-2-(-1)-e (1) - —>0. By
e

analogy, the test point for (0,+00) IS 1 Then, /- (1)=-2.1.e ’2: — 2< o. We mark it

e
above corresponding intervals on the scheme. Behavior of the function on these
intervals is shown with arrows under the x -axis.

Example 3.29. Find extrema points of /(x) and intervals on which /(x) is
increasing and decreasing, if /(x) =Inx - x.

O According to the algorithm

1 /(x) is defined, continuous and infinitely differentiable for x > C:

W ) =(0;+co).
2. I'(X)=(Inx-x)"'=--1= —
X X

3 f\x)=0<=>x-1=0<=>x=1I. Hence x=1 is a stationary point. There are
no other critical points because x =0 is out of the domain.

4. Since x>0, the sign of /'(x) is determined by the sign of the difference
(1- x). Therefore, f\x) >0 for xe (0; 1) and /'(x) <0 for x>1. So we can draw
the following conclusion: the function increases for x e (0; 1) and decreases for x > 1,
thus / (xX) has a global maximum at x = 1(pic. 3.11).

5 jupx=/(1)=-!. m

Pic. 3.11



Concavity and points of inflection

Let a function f(x) be differentiable on an interval X .
Def.: The graph of f(x) is called concave upward (concave downward) if all

points of the graph are above (below) any tangent line to this graph on X .
Pic. 3.12 illustrates the graph of f(x) which is concave upward on the intervals:

[x;; x,], [x3; ) and concave downward on the intervals: (—o0; x,], [x,; x5].

Ay
M2
; y=1e)
TN i
/ TR~ h \ 7 %

Pic. 3.12

Indeed, let’s consider the interval (—oo; x,], containing two points a and b .

The graph of f(x) lies below tangent lines through the points (a, f(a)), (b, f(b)).
So by the definition the graph is concave downward on (—; x,]. By analogy, we
can illustrate given above conclusion about concavity of the graph on each intervals.

Def.: A point M ,(x,, f(x,)) on the graph of f(x) where concavity changes
is called a point of inflection.

In pic. 3.12 x,, x, are points of inflection. Let’s show it for the point x,. The
graph 1s concave downward for points which are prior to the point x, and it is
concave upward for points which are after x;. Thus, as x increases through x,
concavity changes from downward to upward. x; is not a point of inflection.
Although concavity changes from downward to upward, x; is not in the domain of

JF(x).

Remark 3.21
In pic. 3.12 there are three tangent lines to the graph on (—oo; x,]. The graph is

concave downward on it. Note, the slopes of these tangent lines decreases as x
increases. The slopes are determined by values of the derivative f'(x). So, if the

derivative f'(x) decreases as x increases, then the graph is concave downward. For

concavity upward we have: if f'(x) increases as x increases, then the graph is
concave upward,
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Theorem 3.18 (The Second Derivative Test for Concavity).
If f"(x)>0(f"(x)<0) on an interval X , then the graph of f(x) is concave

upward (downward) on X .
Theorem 3.19
If x, is a point of inflection, then f"(x,)=0 or f"(x,) does not exist.
Remark 3.22
1. “ f"(x,) does not exist ” means that finite derivative does not exist.

2. Points satisfying above theorem may not be points of inflection. This
theorem gives only the necessary condition, but not the sufficient condition.
Theorem 3.20

Suppose, x, € D(f) and f"(x,)=0 or f"(x,) does not exist.

Then, if f"(x) changes sign as x increases through x,, then x, is a point of

inflection.
Remark 3.23
According to theorem, if x, is a critical point, but not an extreme point, then

x, 1s a point of inflection.
Algorithm for identifying points of inflection and concavity of the graph

Find the domain D(f) of f(x).
Find f"(x).
Find points x, € D(f) such that /" =0 or f” does not exist.
4. Examine wherever f"(x)>0 or f"(x)<0 on both sides of each points
x, . Determine intervals where the graph of f(x) is concave upward and downward.

bl

5. Find points of inflection and values of f(x) at these points.

Example 3.30. Find points of inflection and identify intervals on which the

graph of f(x) is concave upward or concave downward, if f(x)= e

0 Applying the algorithm given above
1. f(x) 1s defined, continuous and differentiable on R: D(f)=R.

2. Fr()=(=2xe " Y == 2e™% +(=2x)e (=2x)=2¢™* (2x% —1).

N

3. f(x)=0 2 2x*—1)=0 = x = £

V21 (V2

4, f"(x)>0 on [_OO;__}U{T; oo}, so the graph is concave upward.

2
V2 A2

f"(x)<0 on {—7,7} , consequently the graph is concave downward.

91



f"(x) changes sign twice as x increases

')+ - +_
fbﬁm ﬁ/z\_/x through xz—g and ng. Thus,
Pic. 3.13 these points are points of inflection.

) 2)
5. f{T]—f(—TJ—e —ﬁ..
Remark 3.24

We may illustrate the solution with the scheme shown in pic. 3.13. Points
\/2— nd % divide the x-axis into three intervals: ( 0; —%} { V2 \/_}

22

2

[T; 00]. Above the x-axis we mark signs of the second derivative on each of these

intervals, below it we show concavity of the graph with symbols (U), (N).
Example 3.31. Find intervals, where the graph is concave downward and

upward, and points of inflection if f(x)=4x>-9x? —12x+8,
ol. D(f)=R
2. f"(x)=(12x* —18x—12) = 24x—18.
3. ff(0)=024x-18=0<= x=0,75.
4. The sign of the second derivative:

ro- s, 77(x)>0 & x>0,75
f(x) 0,75 X see pic.3.14
N N L‘(x)<0<:>x<07 (seep )
Pic. 3.14 The function f is concave upward for x e (0,75;») and

concave downward for x e (—; 0,75). The point x =0,75 is a point of inflection.
5. f(0,75)=-4,375. The coordinates of the point of inflection are
(0,75, —4,375).m
Asymptotes

Def.: An asymptote for the graph of f(x) is called a straight line such that a
distance between points (x, f(x)) on the graph and points on the line goes to zero as

x increases without bound.
Def.: A vertical line x =a i1s called a vertical asymptote for the graph of f(x),

if at least one of the following limits lim f(x) and/or lim f(x) are equal to

x—>a-0 x—>a+0
lim f(x)=o0,
. . . x—>a-0
infinity, 1.e.|
lim f(x)=o0.

x—>a+0
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Pic. 3.15

Def:Def: Let a function / (x) be defined for all x >K , K >0. A horizontal
line y =b is called a horizontal asymptote (as x —»+00), if there exists the finite limit
lim f(x) =b.

X—>+00
Now, let a function / (xX) be defined for all x<K, K <0. If there exists the
finite limit lim f(x) =b, then, as before, a horizontal line y =b is called a

horizontal asymptote (as X -> -0 o).

In pic. 3.16 there is presented the example of the graph of a function which has
a horizontal asymptote y =b. y=b

Pic. 3.16
Def. . Let a function /(x) be defined for all x>K , K >0. Suppose, / (x) can

be represented by / (X) =kx +b+o0(x) as x*+00. o(x) is infinitesimal of higher
order than x. Then, a line y =kx +Db is called an oblique or a slant asymptote as

X —»+00 . By analogy, also we can define an oblique asymptote as X —»-o o0 .
Theorem 3.21

Let afunction /(x) be definedfor all x> K, K >0. A line y =kx +b is an

oblique asymptote if and only if there exist finite limits k= li Y and
b= lim (/(x)- &).

X—»+C0



Example 3.32. Find asymptotes of the graph of / (X) =e~x .
O /(x) is one of basic elementary functions. It is defined and continuous on
XK. So, / (X) has no points of discontinuity and, thus, it has no vertical asymptotes.
2 1
Let’s investigate behavior of /(x) as x—o0. lime™n = lim—-=0. Hence,

X—00 X—>00 Q X~
the line y =0 is a horizontal asymptote.m

Example 3.33. Find asymptotes of the graph of the function y =\nx-x.

O The function y =\nx-x is defined, continuous and differentiable on
(0; + 00).The graph has a vertical asymptote x =0, which passes through the
boundary point x =0 of the domain, as X%O(Inx-x)zoo (see pic. 3.18).

The graph has no horizontal asymptote as lim (Inx - x)=- @.

Let’s figure out whether there is an oblique asymptote:

. Inx-x @ )
K=1lim = lim
X—>+C0 X (D X-U-co X
-1
Iim — =-1

b= lim (/(x)-kx) = lim (Inx- x+x) =

= |lim InX=+00.
The limit is infinite, so the graph has no
oblique asymptotes. m
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Example 3.34. Find asymptotes of the graph of the function y = ex2-3

X-4

O The function yzz))((zf is defined and continuous on M\{4}. The point

X =4 is a point of discontinuity and lim 2x2-3 é =@m. Hence the line x =4 is a

X->4 X-
vertical asymptote (see pic. 3.19).
The graph has no horizontal

asymptote:
lim 2x2-3 ® li (2x -3)’
ot X—4 0 X (x—4)
= lim 4x = oo.
x—»+co 1
But there is an oblique asymptote
y =2X +8.
Indeed,
K= lim Hm 2x =2,

X *->°°(x-4)X
b=lim(/(x)-kx) -

. f2x2- 3 1 .. f8x-3%
[ JEE—— 2X =lim

X->>COI *x N1 4 J X-»CO U _ 4 J
Guidelinefor sketching the graph ofafunction

1 lIdentify the domain D(f) of f{x).
2. Find the x- and y-intercepts and identify intervals, where f(x) doesn’t

change sign.
3. ldentify whether /(x) is an even/odd function or not.

4.  ldentify whether / (x) is a periodic function or not.
5. Determine intervals on which /(x) is continuous. Find points of

discontinuity and vertical asymptotes.
6. Analyze behavior of /(x) at infinity. Find horizontal asymptotes and

oblique asymptotes.
7. Determine intervals on which /(x) is increasing and decreasing. Find

extreme points.
8. Determine intervals of concavity of / (x).Find points of inflection.

9.  Fill in atable with values of / (x), f\x) and f\x ).
10. Sketch the graph of / (x).



Example 3.35. Investigate the function y = xe ™ and sketch the graph.

o 1. The domain is D(f)=R.

2. There 1s one point of intersection with the x-axis: x=0=y =0,
¥y=0=x=0, because e * # 0= it is the point (0;0). It is easy to analyze the sign of

y(x), taking into account that e~ >0 for all x.
3. The domain of function D( f) is symmetric, but the function is neither even

nor odd: f(—x)=-xe T = —xe* = f(-x) = f(x), f(~x) = —f(x).
4. The function is also not a periodic function: f(x+7)=(x+7)e ™) = f(x)
for ' #0.
5. y=xe™™ is defined and continuous on R => there are no vertical asymptotes.
6. Let’s examine how the function behaves as x —-—o and as x >+ .

lim xe ™ =[—o0-0]=—c0=>there are no horizontal asymptote as x ——.

X—> —0

Let’s try to find an oblique asymptote y=kx+b as x >—o.

—X
X

. xe ) _
k= lim =lime "=40= as x >—o©.

x—>-o0 X X—> -0

Note, we get the same behavior for £ if x —+ o . Thus, there are no oblique
asymptotes
Now let X—>+o . Applying the L'Hopital's Rule
lim xe™ =[o-0]= lim i=[2}= lim %:o Therefore, the line y=0 is a
X—> +00 x—> 40 @ 00 x40 ¢

horizontal asymptote as x —>+o0 .
7. Find the first derivative:

Y(x)=(xe™)Y=1-e"+xe " (-)=e"(1-x),
Further find critical points:
'(x)=0 e“(1-x)=0 x=1
B P R =)
Appling the Increasing/Decreasing Test and the First Derivative Test for
Extrema (see pic. 3.20), we have

f(x) is increasing on (-,1) and S + 1 - >
: : x
decreasing on (1,40). Since 7 (x)/ —_—
y()=1-¢" 1L 0,4, the point (l;l] is a Pic. 3.20
e e

maximum point.
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8. Using the second derivative we get:
y"(x) =[e~x(\ - X)]" = - e~x(I- x) + & x(-\)
-e (- v+ 1) =exX(x- 2);

= X-2)=0: x-2 :
§=c8 X-2)= ® >X'.O Pic. 3.21

Then according to the Second Derivative Test for Concavity f(x) is concave
upward for xe(2;00) and concave downward for Xxe (-co; 2). Since

y(2) =2e 2=— " 0,3, the point J Is a point of inflection (pic, 3.21).
1€

9. Now we fill in the following table:

Table 3.1

X i) 1 (i;2) 2 (2;+c0)
/ + 0 - - -
/ f : : 0 +

| infl. point
y [ IX max, — A 2

e

e2

The graph of the function y =xe ' is

depicted below (pic. 3.22). Obviously, the

range of values is £°(/) = -oo;%

v
Note that we used one more point while
drawing the graph:
y(-1) =-e~-2,7 .«

Exercises

Investigate the functions and sketch the graph.

)y = 2X b v = 2X
)y_\+xr )y_2+x
X
_ e _J.’LlV
C) y =xe =
) Y d) v N

e) =x2(x-2)z; f)y=~_arctanx.



CHAPTER 4. INTEGRAL CALCULUS
4.1. ANTIDERIVATIVES AND INDEFINITE INTEGRALS

In the previous chapter we have studied how to find a derivative of a function
and how to apply it for solving different problems. Now we want to recover a
function from its known derivative. In other words starting with f we wish to find a

function F* whose derivative is f . Such a function is called an anti-derivative.
Suppose, f(x) is a continuous function on X and F(x) is a differentiable

function on X .
Def.: The function F(x) 1s called an antiderivative of f(x) on X if

F'(x)=f(x) forall xe X.
For example, F(x)=x’ is an antiderivative of f(x)=2x as (x*) =2x for
any real x . Atthe same time (x* +1)’ =2x and (x* —=1000) = 2x . So we can say the

functions x*+1 and x?-1000 are also antiderivatives of 2x . This fact illustrates

one very important property of antiderivatives that can be formulated as follows:
Proposition 4.1
Two antiderivatives of a given function differ only by a constant, i.e. if
F and G are antiderivatives of f on X then F — G =const.

Proposition 4.2
If F(x) is some antiderivative of f(x) Vxe X, C— some constant, C e R,

then F(x)+C is also an antiderivative of function f(x) on X .
Def.: The general form of an antiderivative of f 1is called the indefinite
integral of f and denoted by

[ 7o,

where

f(x) is the integrand function or the integrand,

f(x)dx is the integrand,

x 18 a variable of integration.

The general form of an antiderivative is F(x)+C , where F 1is an anti-
derivative of /' and C 1is an arbitrary constant or a constant of integration, and
must always be included. So

[f(odx=Fx)+C.

Thus, for example, I2xdx =x"+C .

Remark 4.1
Continuity of f is the sufficient condition for existence of its antiderivative.
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Properties of indefinite integrals

(U

([ 7o) = 1, or (] rea)= o).

[\

. d( | f(x)dx) = f(x)dx.
[fd(F(x)=F@x)+C, or [F(xyax = j d(F(x))=F(x)+C .

W

4. YaeR, a0 jaf(x)dx:ajf(x)dx.

I+ g(0]dx = [ f(x)dx+ [g(x)dx.
f If(x)dx=F(x)+C, then for any numbers a,b, a#0

W

N

jf(ax+b)dx=lF(ax+b)+C .
a
Techniques of integration

To take different types of integrals it is useful to make a list of basic integral
formulas (standard integrals) by inverting formulas for derivatives.

Standard integrals
1. {0.dx=C
2. '1-dx=jdx=x+c
. a+l
3. [xdr=2 +C(a=-1)
’ a+l

4, .ldx=ln|x|+C
Jx

ax

5 (aax=2—1(, Iexdxzex+C

Ina
6. |sinxdx=—cosx+C

7. |cosxdx=sinx+C

8. de ~Inltan={+ C = 1n|cosecx—cotx‘+ C, (cosecx = ,1 ]
Y sinx 2 sin x
X T 1
9. dx=1In ta:n(—+—j +C =1n|tanx—secx|+C, [secx= ]
Y cosx 2 4 CcoS X
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1

10. | ——dx=—cotx+C
Jsin® x
1. | ! de=tanx+C
J cos®x
12. de Zzla:rctan£+C(a¢O)
‘x*+a* a a
¢ dx 1 x—a
13. =—In +C(a#0
Yx?—a® 2a |x+a ( )
14. .;‘lx—zarcsin£+C,|x|<|a|
. a2_x2 a
15. dx =1n|x+\/x2+a’+C,(a¢0)
“Jx*+a
. ex_e—x
16. |shx -dx=chx+C [shx= > ]
17. [chx - dx=shx+C [chxze J;e ]

Remark 4.2
It is necessary to say a few words about elementary functions which anti-

derivatives aren’t elementary functions: je‘xzdx, Isin x2dx, Icosxzdx,

Ie—dx, J.Slnxdx, J-cosxdx’ J‘ﬁ, i.e. there is no elementary function F'(x), that
X X X Inx

CosXx ) ) .
. In this case antiderivatives

satisfies the conditions F'(x)=sinx® or F'(x)=
can be found by means of power series (non-elementary functions).
Example 4.1. FindI(S sinx +2cosx — 7 + 3\/;)dx :
X

o0 Applying properties 4, 5 and standard integral 3, we get
1
I(Ssinx+ 2cosx—l+3\/;)dx: SJ‘sinxdx+ 2J‘cosxdx—7j‘ﬂ+ 3J‘x2 dx =
X X

. 12
=-5cosx+2sinx—7In| x| +3- 1 -xz+C=—Scosx+zsmx_71n|x|+2§/—x_+c- u
—+1
2

Example 4.2. Find Icos(3x + g)dx :

0 According to property 6 with a=3, b = g we have
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J.cos(3x+£]dx = =lsin(3x+£]+(?. n
7 3 7

sinx+2

Example 4.3. Find J. dx.

sin” x
0 Putting each term in the numerator over the denominator with simplifying
afterward and applying properties 4,5, it follows, that

jsm“zdx j dx + 2j = =Injtan3]+ 2 (~cotx)+C =
sin” x sin x sin’ x 2
X
=In tang‘—2cotx+C. |
x2
Example 4.4. Find dx.
P -[ ’+4
2 2
0 Rewrite the integrand in the form: 2x - _;4 4 =1- 24 Then,
x“+4 x“+4 x“+4

x* 1 1 X X
I > dx=jl-dx—4j. > dx=x—-4-—arctan—+(C =x-2arctan—+C. m
x“+4 x“+4 2 2 2

Example 4.5. Find IS’“ - 2%dx .

0 Rewrite the integrand function as follows: 5 -2* =(5-2)" =10". Thus,
10*
In10

jSX-zxclx:jloxczx: +C. m

\/2+x —\/2 x’
\/4 x*

o The radicand 4-x' in the denominator can be expressed as
4—x"=Q2+x*)-(2-x%). Then,

Example 4.6. Find I

V24 -2-8 1 1

\/2+x2 -\/2—x2 _\/2—x2 _\/2+x2 '

2+t N2t ! _ [~ i —aresin— —
I Ja-xt dx_j\/(ﬁ)z_xzdx I\/md Np)

x+\/x2+2‘+C. [

—In
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Example 4.7. Find J.(cos4 g —sin* f}lx.

2

0 Using the difference of squares formula and the trigonometric identity, we

get

cos* 2 —sin* 2 =| cos? Z—sin? X || cos?Z +sin? | =cos| 2-2 |-1=cosux.
2 2 2 2 2 2 2

Hence, J.(cos4 g —sin* g]dx: J.cos xdx=sinx+C.m

1. Find

2. Find |
Yx'+4

e 1
3.Find | —+=dx.
Y x’x

2
.(2+ .3 ]dx
. sin x

5. Find [

<3x° + 5% = 5x*

4. Find

6. Find

[(3-2x)

2

dx .
1

2

dx .

273 dx |

5
X

dx .

Exercises

7. Find

8. Find

9. Find

10.Find

_ 2
1 421+4x i
4x° +4
A1+ x2 +24/1=x?
\/l—x4

_‘3
1-sin xdx.

dx .

sin? x

[ cos? X dx .
J 2

Integration by substitution

Let x be a function of ¢:x=¢(t), where @(¢) has a continuous derivative

¢'(7) and ¢(-) is a one-to-one correspondence. Then

[ 7 (x)dx=[f(o())e'(1)dr.

4.1)

This formula gives the rule for integration by substitution.
Remark 4.3

Sometimes using the substitution 7 =y(x) is more preferable than x = ¢(7). In

this case the formula (4.1) converts into

[ (W) (x)dx=[ £ (r)dr .
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Remark 4.4

Though there is no unified approach to choose an appropriate substitution, it is
possible to give some tips:

1. If the integrand involves a composite function f (w(x)), then the
substitution ¢ = y(x) is used as a rule.

COS\/; dx.
Jx
o There is the composite function f (\u(x))= cosv/x under the integral sign.
So the substitution ¢ =+/x is appropriate.

Example 4.8. Find I

=x

dx dx ) .
—— =|dt =——=|=2|costdt =2sint + C =2sinyx + C.
Jx 2Jx j -

J.COS\/;

ﬁ:zd[

Jx

2. If the integrand contains the expression y'(x)dx that is the differential of
y(x) then the substitution ¢ =y/(x) is expedient to use.
Example 4.9. Find Isin3x + COSX dx.

0 The integrand sin’x-cosxdx involves the factor cosxdx that is

cosxdx = (sinx)' dx = dsinx . So the substitution ¢ = sinx can be chosen.

[ =sinx 4 int
Isin3x-cosxdx= =jt3a’t:t—+C=sm *iCm
dt =cosx 4 4
5
Example 4.10, Find [Y2X*2 .
X

O The integrand contains the expression — that can be considered as dInx or
X

d (lnx +2). So either the substitution  =Inx or #=Inx +2 are possible.

e t=Inx+2 | t% 5
Islnx+27=dt=£ =jtédt=%+C=g,5/(1nx+2)6+c.-
X
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sin3x

E le 4.11. Find | —————dx.
xample j3+cos3x
o Since d(3+cos3x)=-3-sin3xdx, let £ =3+cos3x. Then
. t =3+ cos3x L 13 ;
j—sm3—xdx= dt =-3dsin3x|=—— —t=—ﬂ+C=— n|3+cos x|+C.-
3+ cos3x dr 37t 3 3
dsin3x=——
3
Remark 4.5.

It is worthwhile to say that it is possible not to use a new variable of integration
explicitly.

Example 4.12. Find Ie3x+4dx.

0 Note, that d(3x+4)=3dx, so to get the expression converted into d(3x +4)

it’s enough to multiply the given integral and then divide it by 3:

3x+4
+C.m

x 1 x 1 X e
J‘e3 +4dx=§_[e3 +4-3dx=§I63 +4d(3x+4)=

Trigonometric substitutions

Trigonometric substitutions are effective when the following irrational

functions \/ a* —x*; \/ a*+x*; \/x2 —a* arise under the integral sign. For example,
making the substitution x=asina allows us to get rid of the radical as

2 2 . .
\/a -X =\/az—azsm20c=\/az(l—sm20c)=acosoc.

Appropriate substitutions are listed below (see table 4.1).

Table 4.1
Function Substitution
a? — x> X=asmo
/ az + x2 xX=atana
a
Xt — 4> xX= =aseca
cosQL

Example 4.13. Find [v4 - x?dx.

x=2sinq
DI 4 - x%dx =|dx = 2cosodo =I2cosoc-2cosocdoc=4jcoszocdoc=

4-x* =2coso
104



= 4jmdoc =2Idoc + 2Icos20(doc =2+ jcos2ocd(20c) =20 +sin20+C =

, 2
=2a+2sinacosa+C=2arcsin§+x 1—%+C -

Remark 4.6
It should be pointed out that making a substitution, e.g. x = asina, restrictions

for o are imposed to get a one-to-one correspondence between x and o:

T T
oae|——,—|.
{22}

Illustrate some other variants of substitutions.

: dx
Example 4.14. Find I—
xv2x+1

2
[ \/2x+1:>x—t2_1 J,zdt
D — —
x\/2x+ dt— -1
V2x+1
N2x+1-1
=1 C=In C.
nt+1+ \/2x+1+1+ .
t=e* +1
1—
f xdx1=dt=exdx =Iz(tdt1)zf(( t(tz)+1;)dt: Uf+ zdt1:
e’ + - — —
oo di_dr
e* 1-1
—1n|t|+I@z—ln|t|+ln|t—l|+(?=ln1— - 1+C.l
- e’ +

Integration by parts

Let u(x) and v(x) be continuously differentiable functions that means u’(x)

and v'(x) exist and u’'(x), v'(x) are themselves continuous functions. Then,

(n(x)v(x) = (2)v(x) + () ()
Integrating both sides with respect to x, we get
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I(u( x)v(x )dx Iu dx+fu V'(x)dx .

Taking into consideration that I(u(x)v(x))'dx is u(x)v(x) up to a constant and
du(x)=u'(x)dx ,wehave u(x)v(x)= Iv(x)du(x) + Iu(x)dv(x) or shortly

uy = Ivdu + Iudv
and finally

Iudv=uv—fvdu. (4.2)

We derived the formula for integration by parts. This formula expresses one
integral Iu dv in terms of another integral Ivdu . Making a proper choice of # and v
the second integral may be easier to evaluate than the first one.

The strategy of calculation includes the following steps. A given integrand is
represented as a product of two functions, one of which is taken for # and the other

one is chosen as dv. Then we find du=u'dx and v= Idv. We should set a constant

of integration equal to zero. At last, we substitute the result in the right-hand side of
(4.2) and so complete the routine.

Below there are listed functions which must always be integrated by parts.
Also there is given the proper choice of u:

1) [P, (x)arcsinxdx : u =arcsinx, dv=F,(x)dx, where F,(x) is the nth degree

polynom1a1
2) IP x)arccosxdx : u = arccosx, dv=P,(x)dx .

3) IP )arctanxdx: u=arctanx, dv=P,(x)dx .
4) IP )arccotxdx: u =arccotx, dv=~F,(x)dx,
5) [B,(x)In(x)dx : u=In(x), dv=P,(x)dx.

(x)

6) Ix In(x dx foraeR, a#—1 u=In(x), dv=x"dx .

7) IPn x)e®dx: u="P,/(x), dv=edx,aeR, a=0.

8) IPn x)cosaxdy : u=PF,(x), dv=cosaxdx,aeR, a=0.

9) IPn (x)sinoxdx : u=PF,(x), dv=sinoxdx,aeR, a#0.

10) IPn(x a“dx: u="P,(x), dv=a'dx,a>0,a=1.

11)[e* -cosbxdxm [e™ -sinbxdx, abeR, a#0, b0, ecither e™ or a

trigonometric function may be chosen as u. In this case integration by parts is
applied twice. As a result we will receive an equation for the given integral.
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Example 4.16. Find I(2x +3)cos5xdx.
O j(2x+3)cosSxdx is a sort of the integral in case 8 with

B(x)=2x+3, cosax =cos5x. So, we take 2x +3 for u and cos5xdx for dv. Then

u=2x+3 = du=2dx

I(2x+3)cosSxdx= 1. =
dv=cosSxdx = v= IcosSxdx = §s1n5x

_ 2x+3 2x+3 . 2x+3

2
s1n5x——2—-l(—0055x)+C: sinSx +—cos5x+C.
55 5 25

) 2.,
sinSx — —Is1n5xdx =
5

To evaluate the integrals IcosSxdx and IsinSxdx we can apply property 6 or the
substitution u =5x. m
Example 4.17. Find | (36x5 +1)1nxazx.

0 We deal with case 5, so

u=Inx = au = ﬁ
| (36x5 +1)lnxdx: X _

dv=(36x5 +1)dx - v=j(36x5 +1)dx —6x5 +x

= 1nx-(6x6 + x) — I(6x6 + x)%dx = 1nx-(6x6 + x) —I(6x5 +1)dx =

=1nx-(6x6+x)—x6—x+C. n

Example 4.18. Find I(x —~ l)singdx .
0 According to case 9, we have

u=x-1 = du=dx

X
_1 . —dx= =
2 2 2

X x X x
=(x- 1)(—2cos5] —~ I(—2cos5]dx =(2- 2x)cos§ + 2Icos5dx =

- (2—2x)cos§+ 2-2sin§+ C =(2—2x)cos§+ 4sin§+ C.m

Example 4.19. Find I\/;-lnxdx.

0 The integrand Jx - Inx corresponds to case 6. Thus,
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u=Inx = a’u=ﬁ
X
I\/;-lnxdx=
dv=\/;dx = v:j\/;dxzjx%dx=2
%

3 2 3 3
:%xélnx—zj.x—dngxélnx—ixé +C=%x% lnx—% +C.m
3 3° x 9 3

3

Example 4.20. Find j(xz + 3)exdx :
0 According to case 7, we have
u=x"+3 = du=2xdx

I(xZ +3)exclx= B o dx — v=Iexdx o

=(x2+3)ex—fex 2xdx =

The result involves the integral Iex -2xdx that is taken by integration by parts

as well. So, sometimes we have to use integration by parts more than once.

x*+1 24l
1 X

=||1- + X =

j[ 1+x2 x2+1},
=arctanx-(x2+x)—j(x2+x)- 12dx: fe 41

1+x
1.dt 1
:dt:2xdx:x—arctanx+zf—l-:x—arctanx+—2—1n|t|:
xa’x:ﬂ

u=2x = du=2dx

dv=e‘dx = v=Iexdx =e*

= (x2 +3)ex — (2x-ex —Iex -2dx) =

=(x2+3)ex—2x-ex+2ex+C=(x2—2x+5)ex+Cl

Example 4.21. Find I(2x +1)-arctanx dx .
0 We deal with case 3, so

u = arctan x = du= 5
I(2x+1)-a:rctanxdx: 1+ x -

dv=(2x+1)dx = v=f(2x+l)dx:x2+x

x2+x:J,(x2+l)—l+x_

=x—arcta,nx+%ln|x2 +l|+C

=(x2+x+1)-arctanx—x—%ln(x2+1)+C. [
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Example 4.22. Find Iezx-cosxdx.

0 In this case we are free in a choice of u . Let u = ¢**

Iezx -cosxdx =

2
u=e”*

— e .sinx + 2%

Denote Iez

8.
9.

. Find I

. Find I

u:er

= du=2e**dx

dv=sinxdx = v= Isinxdx = —COSX

I =e** -sinx + 2e

. Find j 2175 gl

2

1+x
3J—

Find I\/1+ x2dx

. Find I\/xz —4dx

Find Ism (Inx)

lnx

Find Ix -3%dx
Find j In?dx

10.Find Ixz cos2xdx

o -cosx—4je2

= du =2 dx

dv=cosxdx = v= Icosxdx = sinx

¥ .cosxdx.
*.cosxdx as I, then

. cosx — 41 :>]=%e2

Exercises

=e>* .sinx — 2(—e2x - COSX — ZI e>*

er

-sinx — 2Iezx -sinxdx =

(—cos x)dx) =

x(sinx+2cosx)+C. m

11 Find I(m+nx),/mlnx+nxdx ’
X

if m 1s a student’s number, # 1s
the last numeral in a group
number

12.Fin dIM ifmisa

(mx~ +n)"
student’s number, 7 is the last
numeral in a group number
13.Find I(x + m)sinnxdx ,
if m 1s a student’s number, 7 1s

the last numeral in a group
number

14.Find I(mx +n)arctan nxdx,

if m 1s a student’s number, 7 1s
the last numeral in a group
number
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Integration of rational functions

Let P (x)=ax"+ax""'+. . +a,_x+a, and O, (x)=bx" +bx" "+ ..+
+b_,x+b,_ be the n-th degree and the m-th degree polynomials with real coefficients

respectively.

Theorem 4.1 (The Fundamental Theorem of Algebra)

There are several versions of the theorem. The first one sounds as:

A polynomial with complex coefficients has at least one zero in the set of
complex numbers.

The second version states that

A n-th degree polynomial with complex coefficients has exactly n zeros in the
set of complex numbers counting repeated roots.

Remark 4.7

The set of real numbers R is a subset of the set of complex numbers C.
Indeed, any real number x can be represented as x+iy, y=0. Thus, the theorem

holds for polynomials with real coefficients as well.
Example 4.23. Factorize the polynomial P,(x)=x’—x*-9x+9.

0 Grouping the first two terms together and the last two terms together than
factoring the greatest common factor out of each group, we have

P3(x)=x3—x2—9x+9=(x3—xz)—(9x—9)=xz(x—l)—9(x—1)=

=(x-1)(x-3)(x+3).
Using the obtained factorization the multiplicity of each root can be determined
as a power of a corresponding factor. For example, the factor (x —1) 1s raised to the

first power, so the given polynomial P (x) has a root 1 of multiplicity 1. Such a root

is called a simple root. If the multiplicity of a root 1s greater than 1, the root 1s called
a multiple root or repeated root.
Generally, the multiplicity can be defined as follows. Suppose we have a

polynomial P(x) with a root x=a that means P(a)=0. And the k th derivative of
P(x) differs from zero at x =a while its derivatives of order less than k are zero:
P'(a)=0,P"(a)= 0,...p*Y (a)= 0, P% (a)#0. Then the multiplicity of the root
x=a is k. Thus, P(x) has 3 simple roots: -3, 1 and 3.m

Example 4.24. Factorize the polynomial 7 (x)=x’—2x* +9x-18.

0 Following the strategy from the previous example, we get

P(x)=x" 22" +9x—18=(x" = 2x7) + (9x ~18) = x*(x - 2) + 9(x—2) =
=(x-2)(x—=3i)(x+3i). So B(x) has one real root 2 and two complex roots 3., 3i. m

Remark 4.8
If a polynomial has a complex root a +ib, its complex conjugate a—ib is also

a root of the polynomial.
110



Theorem 4.2

If a polynomial is identically equal to zero, then the all of its coefficients are
zero.

Theorem 4.3

If two polynomials are identical to each other then coefficients of one of them
are equal to the corresponding coefficients of the other one.

Suppose B(x)=ax’ +bx* +cx+d, O,(x)=x’-3x*+x-1.  Then
P,(x)=0,(x) implies that a=1,b=-3,c=1,d =-1.

P (x
Def.: A function R(x)zL is called a rational function or rational

0, (x)
Jraction.
Def:: R(x) is a proper fraction if n<m. Otherwise for n>m R(x) is an
improper fraction.
Theorem 4.4
P,(x)

Any rational function

0 ( ) can be written as a sum of a polynomial and a
L(x

proper rational fraction, i.e.

2 e

0. (x) + m 4.3)
where L (x) is a polynomial of degree n—m, Q(—ZCX)) is a proper fraction.
The representation (4.3) can be obtained by meansmof carrying out the long division.
Example 4.25. Express -2);3:2% in the form (4.3).

o The numerator 2x’+x*>—9 is a polynomial of degree 3 (n=3), the
denominator x* +2x +3 is a polynomial of degree 2 (m=2), i.e. n>m, that means

2x +x*2-9 . . . L
ZX X 77 isan improper fraction. Carry out the long division:

x*+2x+3
2%+ -9 | X +2x+3
2x° +4x% + 6x |2x -3
—3x*-6x-9
-3x*-6x-9
0
Thus, 2—)§3+—XZ_—9= 2x — 3. Comparing the result with (4.3) L,(x)=2x-3. m
X" +2x+3
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23 +x*=9

Example 4.26. Express — in the form (4.3).
x_
. 2X +x*-9 . : :
0 The fraction X—erl— 1S an improper fraction for the same reason,
x_

n=23>m=1. Carry out the long division:

_2x3+x2 -9 |x -1
2x° = 2x° | 227 +3x+3
34 -9
3x*-3x
3x-9
3x-3
-6
Hence, 2x3;-—xi—9: 2x* +3x+3 _xil .In the case L,(x)=2x*+3x+3,
S(x) __ 6 .
Ql(x) x=1

Def.: x*+ px+q is irreducible, if the corresponding quadratic equation
x% + px+q=0 has no real solutions. In this case the discriminant D = p* — 44 <0.

: A M
Def.: Proper fractions of form — or X+ N - are called partial
x—a) (x2 +px+q
fractions,if k,le N , x>+ px+q isirreducible
Theorem 4.5
- 8(x) .
Any proper fraction Q_() whose denominator Q) (x) has the form
2(x
linear factors quadratic irreﬂucible factors
f T e ll ls\
0 (x)=bx—a,)".(x—a,)" -(x2 +p X+ ql) ...(x2 +p.x+ qs) ,

Dy<0 Do<0
k +.+k, +2(11+...+ls) =m,

can be expressed as a finite sum of partial fractions:

S(x) _
T(X)—R1+R2+...+Rs, (44)

where R .,i=1,..,s is a partial fraction of the form given in the definition.

112



The representation (4.4) is called the partial fraction decomposition. The
decomposition (4.4) can be rewritten in the following expanded form:

S(x A A B B
(x) __ 4 —k bbb
0,0 o (a) (o) Tama ey
k, items k, items
2Z\/[l)c+N1 N M x+N, ot M, x+ N, S
X+ px+q (x2+p1x+ql) (x2+p1x+ql)
[ items
Kx+1, K, x+ N,
> +...+ T
X+ pX+g, (x2+psx+qs)
I, items
Remark 4.9
1. All numerator’s coefficients are undetermined real numbers that are needed
to find.

2. If a given function is an improper fraction then the long division should be
employed to reduce the problem to integration of a proper fraction.

Integration of partial fractions

Z’u::vaxa —AJ.—=Aln|u|+C=A-1n|X—0t|+C;-

A
1.jx_adx=

. [ A
e (x—oc)k

—k+1 YR
A(x a) +(C = A . ! =
—k+1 —k+1 —k+1 (x—a)

u=x-al_

—k
dx:A‘J.(X—a) dx = du = dx

+C.

_Aj ey =42

3 J‘ Mx+ N
x? +px+q
U= x+— du = dx, x=u—£.
2’ 2 : 2
Complete the square: x>+ px+q = (x +§] + [q —pT] =ul+d’|=
2
where azzq—pT>O.
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M[ _gjw _@m
du=M du+ —duz
J. u? +a* -[u +a? -[ u? +a*

= Mln(u2 + az) + 2]\f;j\/[parctanz+ C.
2a 2a a

The first integral is found by use of the substitution ¢ =u* + a*. The second is a
standard integral. To accomplish integrating we should make the reverse substitution

u=x+L;
2
MX+N _ M ’ 2N—Mp 2X+p
J.x2+px+qu—\/4q_p21n(x +x+1)+—marctan—\/4q_7+c

Mee N ~dx k>1, D<0. Using the substitution u=x+L2 the
(x2+px+q) 2

integral can be converted into a sum:
Mx+ N udu Mp du p’
J‘(xz+px+q)kalx:]\/['[(_uer(N_ 2 ]I( datirs

The first integral can be easily calculated by use of the substitution ¢ =u” +a”.
To take the second one we should rewrite it as follows:

du 1 (uz +a2)_u2 1 du u’du
L d _
J. 2.[ (uz +a2)k a J.(uz_'_az)k‘l .[(uz_l_az)k

(u2 +a’ )k a
If we denote I%— by /, then we will get the recurrent formula:

1 u’du
I, =— Ik_l—j—z ) 4.5)

Example 4.27. Find j T
2x+

0 The function is a partial fraction (case 1). Then

2x+3
=2x+3
j6d" it =2ax |= 2 [2 3infu|+ C =3In| x +1,5]+C =
2x+3 du | 29 u
w3
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Example 4.28. Find Ix3 N 6x2d-t TR

1
2 +6x*+12x+8
1 o
2 +6x*+12x+8 (x+2)3 '

0 The function

can be rewritten as

So we deal with a partial fraction (case 2). Then

—3+1

dx dx u 1
= =lu= 2= _3d = C=- C.
o I(x+2)3 pe=x 2= fudu =5+ 2xv2y
Example 4.29. Find J.,sz—-'-lldx.
X+ x+

: 2x+1 . : : :
o The function P is a partial fraction (case 3), because 2x+1 1s a
X“+x+

linear function, x>+ x+1 is a quadratic irreducible function with the negative
discriminant D =1>-4=-3.
Two different ways of solving the problem are demonstrated below

I. Completing the square in the denominator we have

2 2 2
X’ +x+1= x2+2x-l+(l) +1-[1 =(x+lj 2
2 \2 2 2 4

2x+1 2x+1
Then J.mdx:j dx =

2u—y)+1 2 — 2 3
J‘(u2+% du:.[uz_ku%du:;t:uz;#

ln(u2+%)+C=1n|x2+x+1|+C.

=|—=Inj|+C=

II. Note: (x2+x+1)' =2x+1:d(x2+x+1)=(2x+1)dx. Then

(2x+1)dx _J-d(x2+x+1)
-[ x4l

. =ln|x2+x+1|+C.
x +x+1

The first way is more general than the second one. m
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Example 4.30. Find j dx.

(x +x+1)

) 5
o The function Xt

> 1s a partial fraction (case 4). Complete the square
(x2 +x+ 1)

in the denominator first:
2 2 2

x2+x+l={x2+2x-l+(lj }+1—(lj =(x+lj NEA

2 \2 2 2 4
Then
J‘ X+ ux+/:>x u—/‘ /+5
(x +x+1) )
:J'deu_,_ 2'[;2@

AT )

. L 3
To take the first integral we can use the substitution ¢ =z + 7 and the formula

(4.5) can be applied for the second one.

t=u2+%

u _ L LU e S L)
IR M R G e I
9 N B udu _
ek iy,
z=u = dz=du

—dt= ——9(2arcta:n2u+
=|— e Bl kel
(U2+%) udu:ﬂ 2 \/5 \/5

U du

(.3 —I E ]=6[%arctan\2;3_l+ o \/_arctan\/_]+C—
(2 +24) 2+ 7)) 2(u+3)
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=6

1
—=arctan
V3 NE)

2u U

2w+ 3))

Finally, we have

+(C.

x+5 1
7 de=|—= _ -
J.(x2+x+1)2 J.(u A) J.(u +/) 2(u2+%)+

1 2u u 1 2x+1
+6 Earctan\/g+2(u2+%) +C=—m+2ﬁarctan——J§—+
JENEL
2(x2+x+1) '

Integration of an arbitrary rational fraction

Algorithm

P,(x)
0, (x)

given fraction is an improper fraction, it should be represented in the form
(4.3) applying theorem 4 4:

P
n(x) _Ln_m (X)+ S(x)
0, (%)
Otherwise, move on to step 2.
2. Factorize the denominator Q,, (x):

1. Define whether a given fraction is a proper fraction or not. If the

Z

0.(ebx) - (4 poreas)
ki +..+k, +2(ll+...+ls) =

(x2 +px+q, )ls ,

3. Apply theorem 4.5 to carry out the partial fraction decomposition:

M=RI+RZ+...+RS,

0,(x)
where R,i=1,..,s is a partial fraction of one of the following forms:
A -tk Ny
(x-o) (x* + px+4q)

4. Integrate the obtained partial fractions using the results of cases 1-4.
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Example 4.31. Find jde .
x—1
: : . 22X +x" -9
o Apply the algorithm to the given fraction Lxl—
x —
1. To reduce the given improper fraction to a proper one we can use the result
of example 4.26:

3 2
20X 79 i3s3 0
x—1 x—1

2.- 3. The obtained proper fraction is a partial fraction of an appropriate

form.
4. For the final result it’s enough to take the integral
I(2x2 +3x+3—iljdx=§x3 +2x° +3x—6In|x-1|+C .m
x —_

3
Example 4.32. Find ijdx :

x(x2 + 1)
0 Applying the algorithm we have:

3

X+ x+
x(x2 + 1)
the first term of the numerator with the second one and leave the last term alone, then

divide each obtained group by the denominator where we previously remove
parenthesis:

1. To convert the improper fraction into a proper one we can group

x*+x+1 (x3+x)+1 S+xoo 1 1
2 = 3 R T3 =1+ :
x(x +l) X +x X+x X +x X +x
2. The denominator x’ + x is already factorized as x(x2 + 1).
3. The corresponding partial fraction decomposition has a form:
1 A Mx+N Ax*+A+Mx*+ Nx
2 =t 3 - 3
x(x + 1) x  x +1 X +x

>

where A,M,N are undetermined coefficients. Since two fractions with

identical denominators are equal their numerators must be equal as well. According
to theorem 4.3 equality of two polynomials is equivalent to equality of coefficients of
like powers of x . Equating such coefficients leads us to the system of equations:

A+M =0, (M=-1,
N=0, ‘= {N=0, .
A=1 A=1

Here we compare the coefficients of x°, x' and x° sequentially.
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X +X+1

X u—x =+
dx = f(l +- X dx=x+Inlx|-J dx du=2xdx
X(X2+1) X X +1 X2 +1 dX: u
2
1 rdu
X +In X x+InX 2 Inju+C—x+Inx-~ ( +1)+C—x+In +C.a
2 JU 11 2 VX2 +1

Example 4.33. Find \]X4 "1

X3 +1

O 1 To transform the improper fraction Xa ¥ . (n 4 >m =3) to a proper one
X3 +1
we employ the long division:

X +1 —% +1
So =X+e

X3 +1 X3+1

2. The denominator xs +1 can be factorized as xs +1 = (X +1)(Xz - X +1)

—X +1
3. The partial fraction decomposition of —

has a form:
X3 +1
B+ 1 -X+1 A Mx + N
Xs+1  (X+1)(X2- X+1) X+1 X2-X+1
A(X —X+1)+(X+1)(MX+N) ] _
« Then wusing the method of undetermined
3+1
coefficients described above we form the system
fA+M =0, M =-A M =-
N-A+N+M =-1, 7 N=1-A N IN=1-A
[A+N =1 -A+(1- A)-A=- [-3A=-2,
2 =2 1
4 +1 oX+
wherefrom A:—M =— ,N =—F|nally — =X+—3—r—H--—- :
3 Xs +1 x+1 X2 - X+1
4\]Xg”dx:ﬁxf o bR 22X s Ikt
VX +1 1 3 x+1 3 x -x +1

2X-1 Uu=x+1 t=X2-X+:
W S DRI Y. Vi Ve



2 2
:x_+%J‘%_l ﬁ::x—+%]n|u|—lln|t|+(j=
2 3°u 37t 2 3 3

2
:x_+zln|x+1|—lln|x2—x+1|+C.l
2 3 3

Exercises
1. Find | 3de .
J 3
2. Fll’ld .%.
J 2 _4x—
3. Find [(2X23)E
' T (x-1)(x+2)
. ¢ Tdx
4. Find | (x+1)6 .
5. Find '%.
x+ )
6. Find (2x+1)dx
' (x2+2x+5)2 '
dx
7. Find .
nd | (1) +4)
8. Find J. > SX = 3n=3m dx , if m i1s a student’s number, n is the last
X —(m+n)x+mn

numeral in a group number.

2 2
X —n . . .
dx, if m 1s a student’s number, n 1s the last

9. Fi
nd J.)cz—(m+n))c+mn

numeral in a group number.
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Integration of trigonometric expressions

Method of integration is chosen depending on the form of a given integrand
function. The methods considered below are based on rationalizing an integrand
function. Rationalization is carried out by means of substitution. The following cases
can be distinguished:

1. Icos’”x-sin”xdx.

a) If m=2k,n=2l+1,k,leN, cosx is taken for a new variable ¢ or
I =COSx.
Example 4.34. Find J‘cos2 x-sin’ xdx .

1 =cosX,
u Icoszx-sin3xdx=Icoszx-sinzx-sinxdx= sinx=1-cos’x=1-#|=
dt =sinxdx

£ cos’x cos’x
=|*(1- = (-t )dt=——-—+C = —~ +C. m
R V[ PR L
b) If m=2k+1,n=2l,k,leN, sinx is taken for a new variable / or
t=sinx.

Example 4.35. Find _[0053 x-sin” xdx .

I=sinx
3 -4 2 -4 i . 2
Dj‘cos X -sin xclx=_[cos x-sin® x-cosxdx =|lcos’ x=1—sin*x=1-£*|=
dt =cosxdx

:j(l—zz)t“dt:I(t“—t(’)dt =§—%+C= cozsx —Coix +C.m

c) If m=2k,n=2I, k,l e N, the integral is calculated by use of trigonometric
identities:

. 2 1-cos2x ) 1+ cos2x
SIm"x=———; Cos X =—m
2 2

Example 4.36. Find J.sinz 3xdx .

sin?3x =

1—cos6x|:J-1—cos6xdx
2 | 2

=lx—l-lsin6x+C=£— Sin 0x
2 26 2 12

DJ.sin2 3xdx =

= %J.dx - %J‘cos6xdx =

+C.m
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2. Jsinocx-cosBxdx, Icosocx-cosBxdx, Isinocx-siandx.

Using trigonometric formulas allow to reduce the given integral to the
integral of a sum or a difference of cosine or sine functions.

sin aux - cosfx = %[Sin(a +B)x + sin(a —B)x];
sin o - sinPx = %[cos(oc —B)x —cos(a+ B)x] ;
cosox - cosPx = %[cos(oc —B)x + cos(a.+ B)x].
Example 4.37. Find Isin 3x-cosSxdx.
0 [sin3x - cos Sxdx = % [(sin(3x + 5x) + sin (3x — 5x) ) dx = % [ (sin(8x) —sin (2x))dx =

1. L. 1 1
—Ejs1n(8x)dx—zjs1n(2x)dx— 16cos(8x) 4cos(2x)+C.l

(s1n— —sin —)dx
Example 4.38. Find I e :
cOS—
2
(sing —sin’ %)dx sin 5(1 sin? ;jdx
DJ‘ =I =|1—sin2x—coszx
X X p) 2
CcOS— COS—
2 2
sin — cos —dx
=I 2 —_[sm cosde —Ismxdx— cosx +C.m

cos>
2

Example 4.39. Find Isinz 3xdsx.

sin®3x = 1- cos6x| 3 _[1 —cosbx

O jsin23xdx= > | > dx=%jdx—%jcos6xdx=

X sinb6bx

=lx—lolsin6x+C=—— +C.m
2 26 2 12
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3. _[R(cosx,sinx)dx, where R(-,) is a rational function of cosx and sinx.

1
3+sinx+cosx

For instance, R(cosx,sinx)=
The substitution t=ta:n§ is offered to apply to taking the integral

IR(cosx,sinx)dx. The substitution t=tan§ 1s called the wuniversal

trigonometric substitution.
Express sinx and cosx interms of ¢.

Representing sinx as a fraction % and using the double angle formula
: : X X : : . :
for sinx: sinx=2 smzcosa and the trigonometric 1identity

X x
sin? > + cos? 5= 1 we have

.X X
sin x 2s8In —Ccos—
sin x = = 2 2

sin?2 4+ cos> X
2 2
Dividing by coszg results in

. X X 2 X X
2sin—cos— |;cos” — =
( S1 7 2) 2 2tan2

Sinx = = .
.2 X X X 2 X
sin?Z +cos*= |:cos’E  tan‘=+1
2 2 2 2

: X
Since t = tana, we get

: 2t
sinx =——.
" +1
42
In a similar way, we can get cosx = = . Notice, that df = < dx. So
t cos’ =

2

according to the substitution ¢ = tan> and the identity tan?> +1= e it can be
2 cos’ =
2
: 2dt
derived that dx = ——.
*+1
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Then

2t 1-12. 2
jR(smx cosx)dx = IR(1+t T2 148

As a result we receive the integral of a rational fraction in terms of ¢ . That’s
why this substitution is known as a rationalizing substitution.

) dx
Example 4.40. Find I3 . :
+SIn X + cOsXx
2dt
DJ’ dx :t:tan-)—czj 1+£° _J‘ dt _ dt
3 +sinx +cosx 2 2t 1-t?

2 17 - 1 1Y 1
3+ st —— Fri+2 P +2e—t+—|—=+2
1+¢° 1+t¢ 2 4 4

d(1+1j
=d(r+1j=(t+l dt = dt =I——2—=|u=t+(t+lj‘=
2 2 7

1Y 2
t+— | +—
2 4
1
. oie1)
I a:rctan +C— arctan

+C—iarctan#
s 7 J_ V7 J_ V7 7 J7

Example 4.41. Find I——dx
5+cosx
1=tg—
1 1-17* 1 2 2-dt 2
j5+cosx S i+12 I 1—22 1+ j5+512+1—t2 I412+6
5+
dx =——=dt 142
1+1¢
2 1 1 |2 t 2
:ZI 3 dt =5-\/;arctanT+C =%arctan(\/;tan§]+C. m
t+=
: v
Remark 4.10.

If R(—sinx,—cosx)= R(sinx,cosx), it

is advisable to apply another
substitution: f =tanx or f =cot x.

Example 4.42. Find | IL,Z.
+SsIn" Xx
1

O Since R(—sinx,—cosx)=
1+(-sinx)

== R(sin x,cosx) we should apply the
substitution ¢ =tan x . Thus
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I=tanx d
dc |, df 1+ ¢ dt dt_|d(2t)=(2t)dt =
I =|dt= t _J.1+2t2_J. +(\/§t)2_=(\/§dt) ( )

l+sin’x 1+ ¢ 12
sinx =

=~

1 12
JI+¢2 ¥

adi) A
,/‘( ( f) 1 1 A
_J‘ 1+( z) \/_'[1+( t) ﬁarctan\/2t+(?—$arctan( 2tanx)+C. |

Example 4.43. Find J. 1 dx .

sin® x - cos* x
1
sin® x - cos* x

O R(sinx, cosx)= satisfies the condition:

R(-sin x,—cosx) = R(sinx,cosx).

We use the substitution ¢ = tan x and the following trigonometric identities:

——=cot’x+1=—p—+1,
sSIn” x tan“x
—=tan’x+1.
Cos” X
Then
1 1 1 1 [=tgx

J.-z 4dx=J‘-2' 2 2dx=dt—dxz
sin® x-cos” x sin“x cos’x cos’x T oot x

-1 3

=j(tl2+1j(ﬂ+1)dt=j(l+tl2+t2+1jdt=j(2+f2+12)dt=2t+’—1+%+czztanx—

1 tan’x 3

tanx

+C=2tanx—cotx+tan x+C. u

Integration of irrational expressions

If some of terms involved in the numerator or in the denominator of a rational
function replace with roots of rational fractions including polynomials then the
obtained function is called an irrational function. For example, the function

f(x)= ﬁ is an irrational function.

In some cases integrals of irrational functions can be converted into integrals of
rational functions or in other words integrands can rationalized by use of a
substitution. The following cases can be distinguished:
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1. jR(Q/x—m,g/x_p,...,\s/;)dx.

The integrand R(\/” x" AXP A xl) can be transformed into a rational

function by means of the substitution x =¢*, where k is the least common
multiply of the indexes n,q,..,s (LCM (n,q,..,5)).

Example 4.44. Find I

NEFw

1
o The integrand J_ s involves one square root and one cubic root. So

n=2,q=3. Then we should use the substitution x =¢° as 6 = LCM (2,3).

‘ J-6t d 6t5dt =6jt3ﬂ=6[j(t3+l)_ldt]:

J.\/;cf_x3

£+ (t+1) t+1 t+1

J'(Hl)( Hl) dt=6[j(t2—t+1)dt— i}=6[£—§+t—ln|t+l|]+(?=

t+1 t+1 3

=2 =37 + 6t = 6Inft +1|+ C = 2x - 3x + 6¢x ~6n[¢x +1|+C . m

2 | R({/(ax+b)m,€/(ax+b)p,...,S(ax+b)l)dx, a,b= const.

Using the substitution ax+b=t*, k=LCM (n,q,..,s) leads the integrand
R(Q/(ax +b)" ,Q/(ax +b)” ,...,{/(ax + b)l ) to a rational function.

dx
—{‘/2x—1 '

Example 4.45. Find j N
x_

o Let 2x—1=t4:>x=%(t4+1). Then +/2x—1=¢* and Y2x-1=¢,

dx:l-4f3dt.
2

Let’s eliminate x from the given integral and take the obtained one:

28t 2t2dt
IJ2x 1-42x—1 jt —I
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The last integral contains the improper fraction. We transform the integrand in
such way:

2 2 2 _ -
20 _,(-D+1_,(r-1 ((t DE+D j 2(”“L)
r—1 r—1 -1 t 1 r—1 t—l r-1

Return to integrating:

2
Izt dt _P(t 1+ﬁ]dt—2{%+t+ln|t 1|]+C

Making the reverse substitution ¢ =¥/2x—1:

=2x-1+242x-1+2In|{2x-1-1|+C.m

dx
IJ2x—1—(‘/2x—1

Exercises

Find the integrals given below:

IICOS de
Sm- x

2. [sin*Z;
’ 2
3. .sinisinﬁdx;
J 2 5
4. [cos® xdx
5. [teg*3xdx
__dx
(4-2)
J‘\/X2+16

X

>

~

dx .

>

oo

. Isin 2xcos3xdx .
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4.2. DEFINITE INTEGRALS AND THEIR APPLICATIONS
Definition and geometrical interpretation

Consider the problem of calculating the area of a region S in the coordinate
plane, bounded by vertical lines with x-intercepts a and b, the x-axis and the graph of
a function /, which is continuous and nonnegative on a closed interval [d/,/5]

(pic. 4.1).

For convenience we shall refer to S as the region under the graph off from a
to b. Our goal is to define the area of S. In other words, we wish to calculate the
i@rea under a curve”.

Suppose, the area exists. Let Sb be the value of the area. Note, that
Sh=(b- a)®0 if /(x) =f0=conston [a b]. It's obvious that this formula is not
valid to evaluate the area under the curve when / is an arbitrary function. Let’s

begin by dividing the interval [a,b] into n subintervals so that
\a,b\ = [x(0,X4]u [x,,x2]u ...u [xnj,xn]. This can be accomplished by choosing

numbers X0, x1,x2,...,xn , where a =x0.h=xnand xk] <xk for any Kk =\.....n . The

set of these points is called apartition of the interval [a, b] into a finite number of
subintervals. The length of each subinterval [ ,.x ] is denoted by Axk and

Ar, =x - xk x . Note that xk =xk ]+Axk. On each subinterval we choose an arbitrary
point ke [xNjX*], k =I,..,n. The product f(”Kk)-Ark is equal to the area of the
rectangle of width Axk and height /(™ A). Then, the wished area is approximately
equal to the following sum:

Yy *X/(y .4orT;. (4.6)
k=1

The expression ™ /(¢ )setsxk is called the Riemann sum or the integral sum.

k=i



Let d = max Ax,, where d 1s called the diameter of the partition. It is clear that

with decreasing d, the accuracy of calculating the area increases. More rectangles of
smaller width lead to a better approximation. So we determine the area as a limit of
integral sums as n — < provided that d — 0

= lim Zf £,) Ax, . @.7)

n—>o0
(d—)O)

Example 4.46. Find the area under the curve y=x*, x€[0,2].

0 Firstly we should form the integral sum » f(£,)-Ar,. Let

b-a 2 2 2 %Y ak?
m =t 2 2 Then =2 s(e)-(a) =[] -2
n n n n n

- “ 4K 28 ,
Z ! (ik )Axk =22 _3 Z Using the formula
k=1 =1 N =l

ik2—12+22+33+ +n’ ( )6(2n+1),weget
k=1

O i e

6 3 n n n

_mosz &, )Ax, = 1imi(1+l](z+lj=§.-

n—w3 n n

The case of an arbitrary continuous function. Now we digress from the specific
task and consider some function f(x), which is continuous on [a,b]. Let

Y. (&, )Ax, be the corresponding integral sum.
k=1

Def: If a limit of Riemann sums exists and doesn’t depend on a partition of
[a, b] and choice of points &, , it is called the definite integral of f(x) over [a, b]

and denoted by:
b

If( )dx = ]—hme £, )Ax

n—>0
a (d—)O)

where

b
J' f(x)dx is the definite integral of / from a do b,

I — the value of the definite integral,
f(x)dx — the integrand,
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/ (x)- the integrand function or the integrand,

a - the lower limit of integration,
b - the upper limit of integration.
Def. The function/ is called integrable on [a, b], if the definite integral

\f(x)dX exists.

Remark 4.11
In this section we only consider integrals of bounded functions over bounded
segments - so-called proper integrals. Integrals like Je Xdx and j ax are
X-a

examples of improper integrals. They will be observed later.

Geometric interpretation

As it was shown above, the definite integral of a nonnegative functionf is
equal to the area under the graph of / :

\f{x)dx =Sh.

Example 4.47. Evaluate JV E - x 2dx .

-4
[0 Notice, the wished region whose area should be
found is upper semicircle with center at (0,0) and radius 4

(pic. 4.2). Indeed, the integrand y =\I\6-x2 or
X2+y2=16.Thus,

)Vi6- .r*=Ts;ide=e—E: 4111

Connection between integrability, continuity and monotonocity

Proposition 4.3. If /(x) is continuous on a closed interval [a,b], then f{x) is
integrable on [a,b\.

Continuity "~ 7 =» Integrability

Proposition 4.4. If /(x) is monotonous and bounded on a closed interval
[a,b\, then /(x) is integrable on [a,b].

Monotonocity "T" Boundedness Integrability



[a,b].
Integrability Boundedness

Remark 4.12
If f{x) isn't bounded on a closed internal [a, b], then f(x) isivt integrable on

[a, b] (in the sense of existence of a definite integral (see the definition given above))
Proposition 4.3 and 4.4 are sufficient conditions of integrability /(x) on

[a, b]. Proposition 4.5 can be considered as the necessary condition of integrability

f(x) on [a Al
Properties of definite integrals

Let functions / (x)and g(x) be integrable on concerned closed intervals.
Properties listed below can be directly derived from the definition.
1 If f(a) exists, then J/(x)<ix=0.

a

2. |/ (.rdx =-1/ (.r)dx.

a b

3. The linear property: X oc/(x)+pg(x))dx =a\f(x)dx +pjg(x)dx,

where a, Pe XX a ¢ 0,P ®0.

4. The additive property: forany a,b,c J / (X)inec=|/ ( x)ictJ / (X)M6C.

a a C

5 1f f(x) =A,A =const, then Jf[x)dx =A{b-a).

Remark 4.13

6

According to property 5, | dx=7 (x) ~ =6—-5) =11
5 a=-5 A=6

6. If f(x) >0 on [a b], then |/(x)<ix >0.

a

7. 1f /1 (x) > g(x) on [d, A], then jb“/(x)<2x>ng(x)Jx.

a a8

8. If /(x) isintegrable on [a, A], then |/(x)]| is also integrable on [a, A} and



WF(Ox)\dx> j/(x)<ix

9. The Mean Value Theorem for definite integrals (MVT). If f{x) is
continuous on [a, b\, then there isa number £e [#,&], such that

x)dx =f(£)(b-a).

Remark 4.14
The number £ is not necessarily unique (see pic. 4.3).

The MVT has an interesting geometric interpretation, if /(x)>0 on [a,b].

b

Af(x)dx is the area under the graph off fromato b.

mi

b°u d 16 ri® It~lanc® Pro<™at iIs the area of a rectangular region
e by a horizontal line y =/(£,), the x-axis, and lines x=a and x =bh.
ding to the MVT, the areas of these figures are equal (pic. 4.3).

Fundamental theorem of calculus

Evaluating definite integrals by means of taking a limit
of the Reimann sum is very complicated for the most part. So
principally another way of calculating is shown below.

Suppose/ is integrable on a closed interval [a,b], then
X

[/(/) dt  defines a new function F of x:
a

X
F)=J/(0 dt,xe[a,b] (pic. 4.4



It can be proved that if fis continuous, /' is differentiable and moreover

LE(x)=1(x). f(x)‘*F(xgh@

Indeed, F'(x) can be  approximated by , : I

F(x+h)- F(x) :
P :

x+hela,b]. F(x+h)-F(x) is approximately equal to

the area the rectangle with width / and height f(x) (see pic. 4.5). Thus,

\ 4

where h is enough small and Pic. 45 f(x)h

%F(x)=F'(x)=lhi£r3F(x+h2_F(X)=1hi£%_h_:f(x)'

Fundamental Theorem of Calculus, Part I.

If f is continuous on [a, b], then F(x)= If(t) dt, xe[a,b) is continuous on

[a, b] and differentiable on (a,b) and
d X
F'(x)=— t)dt |=f(x).
=10 a)-r(:
Fundamental Theorem of Calculus, Part I1.
If f is continuous on [a, b] and F (x) is any antiderivative of f on [a, b), then
b

[7(x)dr=F)

a

"= F(b)-F(a)

This formula is called the Newton—Leibniz formula.

We indicate three ways of calculating the definite integrals:

— by the limit of Riemann sums,

— by the geometric sense of the integral,

— by the Newton—Leibniz formula.

For example 4.46 the area under the graph of x* from 0 to 2 found above as

the limit of the Reimann sum can be also calculated as follows:

2 32

S; = [xde="-

Hence, x° is an integrable function on [0; 2].
4
Example 4.48. Find J‘(LZ ++/x ]dx
X
1
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0 According to property 3 and the Newton—Leibniz formula,
4

4 4 4 4 P pA
I(Lz+\/;] I x +x”2 dx =J.x‘2dx+.|.x%dx=£— + 200 -
X 1

1 1 1 11 %1

4

R I e
=—— 4 =——+1 —8 1

x1+3x . ( )+ 3 4+ " ( )=
3 14 9+56 65 5
=—+—= = —. m
4 12

Example 4.49. Find J.JIJF cos(2x
1+cos(2x

O Since =cos’ x, we get

_HIJFCOS (2%) I\/cos xdx= j|cosx|dx

. T
cosx, if xe O,—:|,
Taking into consideration the fact that |cosx|= 7:2 ,
—cosx,if x e En}

. pA x ]
Ilcosx|dx= Icosxdx+ J‘(—cosx)dxzsinxL)A
0 0 152

1, if xe{ -5,—1],

1.2].

2
Example 4.50. Find [ f(x)dx,if f(x)= {§+ 3x, if xe
-5

o The given function f'is a piecewise-defined function, whose graph is shown
in pic. 4.6.

/(%)

—:6—:4%-{210

Pic. 4.6
Function f(x) is continuous on [-5,2]. Indeed, —1 and 2+ 3x are continuous
on [-5,-1) and (-12] respectively as basic elementary functions. Further, let’s
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examine f(x) for continuity at x=-1. The left-hand limit hznl_0 f(x)=-1, the
right-hand limit lim f(x)=-1 and moreover f(-1)=-1. Thus, being based on

x—>—1+0

the approach applied in the previous example,

,[f _[ )dx+jl(2+3x)dx:(—1).(_1_(_5))+[2x+32i2]

-5

=—4+{2 2+3 ] [2( ) (1)2] —4+10+%=§,-

cosx, if xe[-m; 0],

2

-1

2n
Example 4.51. Find x)dx, if f(x)=
b _J;f( ) 1 {sinx, if xe(0; 2.

o The given function f(x) is a piecewise-defined function. It is continuous
at every point in segment [-m; 2m] except x=0, because f(0)=1# f(0+0)=
= lim sinx=0. Function f(x) has a jump discontinuity at x=0.

x—0+0

To take the integral we should represent it as a sum of two integrals over
[-7; 0] and (0; 2=]:

27 0 o
_[ f(x)dx= I cosxdx + I sinxdx = sinx|‘j1t + ("Cosx)lﬁ" _
: 7 0

=(sin0 —sin(-n)) — (cos2nt—cos0)=(0-0)-(1-1)=0.m

Integration by substitution

Proposition 4.6. Suppose t =y(x) has continuous derivative \y'(x) on [a, B],
S (@) is a continuous function on [a,b], where yw(a)=a, w(B)=b. Then

B b
[ £ () - w(xydx = [ £ (). (4.8)

This method is called integration by substitution for the definite integral.
1
Example 4.52. Find Ix -(2-x)dx.

0
o Since d(2—x2)=—2xdx, let ¢=wy(x)=2-x Changing variable of
integration implies changing limits of integration. Thus, the new lower limit of
integration a=y(0)=2-0"=2, the new upper limit of integration

b=y(1)=2-1*=1. Then
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t=2-x
) dt——2x1dx i | 6 I2
[x@-x*Ydx=|xdr=——dt |=[¢ ——dt =——J't dt = —It dt==-—| =
2 26
0 a=0=>a=2 2 1
B=1=b=1
:i(26_16) 64-1_63 21.
12 12 12 4

Note, that we have to apply property 2 because the new upper limit of integration 1s

less the new lower limit: a=2>b=1.m
In3 3x

Example 4.53. Find j

= dx .

o To take the integral we should make the substitution ¢ =1+ ¢’ because the
expression for dt =3e**dx is involved in the integrand up to a constant.

t=1+e33x
In3 3 dt=3e de 28

28
| = ;’; l1n|t||

~Ln28-m2)=Lini4 u
3 3

0 a=0=>a=2 2
B=In3=5b=28

% dx
Example 4.54. Find | ————.
P ! 2x (x+c?)

0 The integrand contains —— that is dx , so we can take +/x for the new

2Jx

variable of integration ¢. Then

[ = J_
dr =2

t"+c C C

] 2\/_ j. at =larctan£
02\/_(x+c) a=0=a=0| 2+
B=c*=b=c

‘1
= —(arctangE - arctanO) - .|
o € c 4c

Integration by parts

Proposition 4.7. Let u(x) and v(x) be functions with continuous derivatives
on a closed interval [a,b]. Then

b b

J‘u-dv=u-v|Z—J‘v-du. 4.9)

This method is called infegration by parts for the definite integral.
136



T

2
Example 4.55. Find Ix-cosxdx.
0

0 According to case 8 with u =x, dv=cosxdx (see subsection “integration by
parts” for the indefinite integral), we have

u=x=>du=dx 2

X COSXAX = | gy — o5 xdx = v = Icosxdx =sinx

n 2
:x-sinx|g —Isinxdx=
0

= s L

=£-sin£—0+cosx|5=£+cos£—cosO=£—l. m
2 2 o2
1
Example 4.56. Find I(4ex —5)xdx .
0

0 The integrand (4e* —5)x corresponds to case 7 with u =x, dv =(4ex - S)dx

(see subsection “integration by parts” for the indefinite integral), so applying (4.9)
1

j(4e’“ —5)xdx = x(4e” - Sx)\l0 - j(4ex —5x)dx=(4e—-5)-0— [4ex -5 %2]

0

=4e-5-(4e-2,5)+(4-0)=15 =
Example 4.57. Find Ixz sin xdx .
0

O Unlike the previous example, the formula (4.9) should be applied
consecutively twice.

T
Ixz sin xdx =

0

u=x>= du=2xdx
dv=sinxdx = v=Isinxdx= —COS X

= x*(=cosx)|, - _[2x(— cos x)dx
0

U=x=du=dx

T
—_— 2 —_ .
=T +O+2Ixcosxdx— dv=cosxdx:>v=jcosxdx=smx
0

=7’ +2(xsin x|, -
—[sinxdx) =7 +2(0 -0+ cosxf}) =n’ + 2(-1- ) =7~ 4 m
0

Integration of even and odd functions over intervals with symmetry
with respect to the origin

Suppose, f is an integrable function on [-/,/] .
If f(—x)=- f(x),1i.e. f isan odd function, then it is easy to prove that

jf(x)dsz, leR.
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If f(—x)=f(x),i.e. f 1san even function, then

jf(x)dx=2-jf(x)dx, leR.

|

Example 4.58. Find J.sin3 xdx .

2

0 There are two ways of taking the integral:

Tm| . .. : : .
1) Note, [—5,5} is a symmetric interval, sin’x is an odd function:

sin® (—x) = —sin’ (x). Then

sin’ xdx=0.

a0 | B

Y]

unctions integrating method, we have

p—h

2) Using the trigonometric

2 2
sinzx-sinxdx=—j(l—coszx)-dcosx = I(coszx—l)-dcosx =

3 > cos| = cos| —=
(cosx) 2 T 2 T
= —cosx || =|————cos| —||— —cos| ——||=
3 n 3 2 3 2

SEmO

10

Example 4.59. Find I cosnxdx, ne Z,n=0.

-10
0 The closed interval [-10;10] is a symmetric interval, cosnx 1s an even

function: cos(n(—x)) =cosnx . Then

12 10 . 10 ]
Icosnxdx=2-.|‘cosnxdx=2,Slnnx| =2sln10n_0=
n n

0

2sin10n
.u

n g

-10
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8

Find J(V2 +Vxjdx.

0

2. Find I1+2 dx.

3 Fing1 9
X +3x+2

4. Find | xVx2-16dx.
4
3

5 Find | arctanxdx.

0
n

6. Find | xsinxcosxdx.

-n

Using the definite integral we can find:
- areas of plane figures,

- arc lengths of plane and space curves,
- volumes of solids of revolution.

7 Find| X
o X2 +4X+95

3
8. Find | X
X +X

3
9. Find |x>/9- x2dx.

3
3n
2

10. Find | sinsxcossxdx.

Applications to geometry

Areas of plane figures

1) Explicit boundary equations. Let f1(x), f2(x) be continuous on [a;b] and

fx(x) <f2(x) (see pic.4.7).

Then the area between two curves is equal to S :

S=[(T(x)- fIx))d .



Example 4.60. Find the area of the region between the parabola y =2 x-x2
and the straight line y =-x .

O Graph these functions first and then find the intersection points (see pic.
4.8).

{viZX_- X' =_ x =2x- x2=>x2- 3x =0 X_=0
y =X jc= 3.

The equation y =-x describes the bisectrix of the second and the fourth
coordinate quadrants while y =2 x-x 2 is an equation of opening up parabola whose

2
vertex is located at the point with coordinates: xv= L L, v,=2-1-(1)\ In
- (1
addition to this analyses we can find points where the parabola intersects the x - axis
(x-intercepts):

fv=2x- x2, 2%-x2=0 x=0,

\y :0; =
b
Applying the formula S =J (/2(x)-./j(x))A\ we get
a
] ] 3 2 xal
S =J(2x - x2- {-x))dx =J(3x - X2)dx = —x" =" 3= =
v2 3 2
27-1
----5--2-3 =£= 4.5.

Example 4.61. Find the area of the region between the parabola y = 4x - x2and
the x-axis.

O First of all draw the graph of the function y =4x~x2 and find points at
which the parabola intersects the x-axis:

0,
4.

$Z o*~x2Z" 4x- x2=o0 §

The region whose area we wish to find is given in pic. 4.9.



Pic. 4.9
Then

4 /1
S J{Ax- x2)dx= 2n2- - 4=32-— =—,
5 3j O 3 3
2) Boundary equations given parametrically. Let the region be bounded
by a curve given by i =x(t), y =y(t), t0<t<tx two lines x =a,x =b and the
x-axis. Then the area under the parametric curve is equal

h
S =| y(t)x\t)dt, y(t)>0.

where x(t0)=a, x(*) =b .
Example 4.62. Find the area of the region bounded by the ellipse: x =acost,
y =bsint,a>0, b>0.

[0 Taking into account symmetry of the region about coordinate axis we can
evaluate a quarter of the area we want to find and then multiply the result by 4 (see
pic. 4.10):

h
Apsm.t(acost)'dt

To define limits of integration we solve equations:

71
Xx=0<»acost =0=>fn=—
0o 2

X =a <>acost =a=>tx=0.

Substituting the limits of integration, we get



n/2 2

5= J &sin/(firoos/)'cl/ = -ab JSin/(-sinyat =an | sin2ic =an J 760327,
A n2 0 0 0

by Lo 2 P _Gney 0. U&
22 o wT 2 20y

The area of entire region is equal to S =nab. s

Example 4.63. Find the area of the region bounded by the v-axes and one arc
of the cycloid x =a(t - sint), y =a(1- cost).

O Let the interval of changing t be [0;2n] that corresponds to one arc of the
cycloid (see pic. 4.11).

Then

S =| af\ -cost){a{t-sin/)) dtja(\-cost)a(\ -cosl)dt =a2J(I-2co0s/ + cos2/)<i/
0

N
= azzf(l—Z cos/ + -I-T-(-:-QEZ-/ dt :a22'ﬁ3_ 2cos/ +16082/ dt =

oV 2 y ov?2 2

f 1 X5, fm 1 X
=a —t-2sin/+=sin2/ =a' —2n-2sin2n+—=in4n- 0 3na2
2 4 2 4 y

3) Boundary equations in polar coordinates. In polar coordinates a curve is
represented by an equation r =r(cp), a <@<p .

Part of the plane enclosed between two rays @=a, @= @3 and an arc of the
curve r(cp), is called a curvilinear sector (see pic. 4.12).

y=r(d)

Pic. 4.12

The area S of the curvilinear sector is equal to

s:3fm@wm



Example 4.64. Find the area of the region enclosed inside the cardioid
r =a(\ + coscp),<y > 0.

O The cardioid has symmetry about the polar axis as
r(-cp) = <"1+ cos(-cp)) =€(1 + coscp) = r(cp). The x-axes plays the role of the polar

axis. So it’s worthwhile to calculate one half of the desired area: 2—8, where

0<@<n (seepic. 4.13).

Pic. 4.13
j I n K

?S = 2—J[<72(1 +coscp)2<igy’™> S = a2Jf(I + 2c0s(p + cos2qu)d0) =

N
=<2J 1+2005p+ 1+ 0082 4 :<72Jrl‘§ +2coscp +£c032cp ¢ =

y

] 1 fm N
=a 3—q:)+(bsmcp +lsm20p —a —A+2sinn +lsin 2n-0 snaz
2 4 V2 4 r -~

Arc lengths of plane curves

1) Let a plane curve L be represented parametrically: :
te [0,h]5x(t) and y{t) can be considered as coordinates of the radius vector of a
point lying on the curve (pic. 4.14, a). It implies vector form of the curve

representation: r(t) =(x(/),y(7)) .

Pic. 4.14



Denote arc length of the curve as /, then infinitesimal element of arc length is

dl . Further let’s find a derivative % By the definition of a derivative we have

Zi —BII}) i—i Moreover, Al is approximately equal to |A7| for enough small A¢ (see
A F(t+At)—
pic.4.14, b). So 11mA —11m| r| | ( )

N0 A A0 Af At—)O Al

r(t)| ,where Ar = F(I+At)—l7(t) =
=(x(t+At)—x(t),y(t+At)—y(t))T =(Ax,Ay)T. As we know the length |d| of a
vector d =(a,,a,) can be evaluated as \/a? +a? .

Summarizing the above we get

N R B

dt a0 At A0 W\ At At dt dt

= OROE

It’s obvious that / = Idl . More precisely we come to

T e

2) Letaplane curve L be represented by y = f(x), a<x<b.If weadd
the equation x = x to the given equation and treat x as a parameter then applying the

formula we have
S CRCOES R CIE

3) Letaplane curve L be given in polar coordinates: r=r(¢), a <@ <B.
Then taking 7(¢)cos@ and 7(¢)sing for x and y respectively and considering ¢
as a parameter lead us to

1=T r2+[£’£] do. (4.12)
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Example 4.65. Find arc length of the curve described by y2=x3between the

origin 0(0,0) and Al 4 87371
39,

[0 The considered curve segment is located on the first coordinate quarter and
; : .3/ 4
represented by the equation y =/(x) =x)I2. Since f'(x) =—x/2 and 0<x<—,
applying the formula (44 1) we have

4/

3—)(7’\ dx= fJl +—xdx=— 1H—X =

+ =@ -il5=
4 21V 127

Volumes of solids of revolution

Suppose, a continuous function y =/(x) is defined on \a,b] and keeps its sign
on it. The problem is to find the volume Vk of a solid obtained by revolving a figure
bounded by the graph of /(x ), x=a,x =b,y =0 about the x -axis (see pic. 4.15).

To get the answer the same approach as we applied when observing a concept
of the definite integral is considered. Divide the interval \a,b\ into n subintervals:

[ryxJAXp.xy],..,A'and take a point g, in each subinterval [x ,x+], /=1,2,../I.
Then form a cylinder whose height Axt=xr-.r and base radius ./ (s,)- 4s volume

Is Tcf2( ) Ax;. So we can take *71/'2(gJ Axr for the approximation of the desired

volume Kv. Note, that the smaller intervals we choose the better approximation we
have. Thus,

1n= X =ndf 2{x)dx s (413

(maxAx,—0)



Example 4.66. Find the volume of a solid obtained by revolving the plane

region bounded by y=¢€*, y=0, x=0, x =1 about the x -axis.

146

0 By the formula (4.13)

1
=£(1—i2].l
0 2 e

Exercises

V;zanfﬂde:n(_%eQ{J

0

. Find the area of the plane region bounded by

a) y=x2,y=l,x=3,y=0.
X

b) y=x*,y= l, v =4 The region is located in the first quarter.
X

¢) y=4-x"y=x"-2x .
d) y=lnx,y=In(x+1),y=1y=-1.

. Find the area of region whose boundary is described by the parametric

equations {9; - %g glons tf »and y=5 (y25).

. Find the area of region whose boundary is represented by the parametric

x=2+3cost,

equations { y=3+2sint.

. Find the area of the region with boundary given in polar coordinates

rF=5¢c0s0.

. Find the area of the region with boundary given in polar coordinates

F=a/3sin¢@.

. Find the area of the region with boundary given in polar coordinates

r=coscp,r=sincp,0£(p£§.

. Find arc length of the curves described by

a) r=2(p,0£(p£%;

b) y=4-x", x=-2x=2;
C) y=1nx,x=\/§,x=\/§;

d) x=t-sint,y=1-cost,0<¢<2x.

. Find the volume of solids obtained by revolving the plane regions bounded

by:
a) y:xz,y2=x;

b) y=cos2x,y=0,x=0,x=§.



43. IMPROPER INTEGRALS

Def.. Suppose, f(x) defined on [a,+ co) is integrable on every closed interval
[a,q], contained in [a,+ co).
Then the quantity

+0 L)

1/(x)<ix= lim

if this limit exists, is called an improper integral of the function f(x) over the
interval [a,+ co).

If this limit exists and equals a finite constant it is said that the improper
integral converges and diverges otherwise.
Example 4.67. Consider the following integrals:

[0 The first integral can be interpreted as an improper integral while the second
one is a proper integral. Similarly to a proper integral an improper integral is equal to
the area under a curve. But despite the case when the integral of a bounded function
over a bounded interval (pic, 4.1) can be taken a plane region whose area is
calculated by an improper integral is always infinite (pic, 4.16, a).

Pic. 4.16

The problem is to identify whether rﬂ converges or diverges. Applying the
X
definition, we get

— = |im f— = lim (An|xMN)= lim (Inq) = co.
J VvV rl-H-°0J y iI’\+OO\( | 1) r|A+Aa( q? co



+00 7

: T : : rux . :
Since the limit is infinite the improper integral ~— diverges. Calculations
I X
under the limit sign are carried out by means of the Newton-Leibniz formula as the
integral transforms into a proper integral. =

00
Some variations of the integral j"/(x)<A, where f(x) is bounded on the

a

interval [a,+ °0), exist.

7 7
1| /7 (X)civ=bin|/ (x)dx

where / (x) is bounded on the interval (-co,6], but the region is unbounded, because
the left endpoint is infinite (pic. 4.17).

2. JI(*)<& = Jf(x)dx +Jf(x)dx ,

where f(x) is bounded on (-00.+00). In the considered case it can be identified two

special points: -o0.+ oo. Dealing with similar cases the given integral should be

represented as a sum of two improper integrals with only one special point. Notice,
the integral on the left hand side of the equality converges if and only if both integrals
on the right hand side converge simultaneously.
All of the given integrals are called improper integrals ofthefirst kind.

Example 4.68. Investigate the values of p for which the integral converges.

J[VP ,Where p isaconstant, p>0,po1.

O According to the definition, we have



00 N
'[ dx Q( = |nn_)_(_]:P_

1 XP In+cl-pq

The problem of evaluating the limit can be separated into two problems depending on
values of p .

. oAp Lo (g 1 . i
Ifp>1 lim------ = 1lim 11 . Since the limit is a constant
~MOC]_ P T>HC p-1 p_1|_||p'1 P-1

the integral converges.

d-
fo<p<ilim -7 =lim?% -

N-»+°° 1 - p T)-H-co 1_ p 1 - p
Thus we has proved that

= m . Hence the integral diverges.

fconverges, ifp >1,
4 [diverges, if 0<p <1

Def.\ Suppose, f{x) defined on an inteiwal \a,b) is integrable on any closed
interval \a,rj] =\ci,b]. It is assumed that the right endpoint b is a constant.
The quantity

b b-5
JI (x)dx =lim J f{x)dx,

if the limit exists, is called an improper integral of / (x) over the interval \a,b).

The essence of this definition is that in any neighborhood of b the function f(x)
may happen to be unbounded (pic. 4.18).

b
Consider some variations of the improper integral J/ (x)dx:

a



(0] n
L (x)dx =1lim | / (.r)cl.r,
a

at+b

where a is a constant, f(x) may be unbounded (pic. 4.19).

b c b
2. JI(x)<ir =Jf'[x)dx;+|/ ( x)ic, where a,b are constant. In this case, the
a a Cc

additive property is used. Both integrals have only one special point, and f{x) may
be unbounded in a neighborhood of c, where c is an interior point of the interval
[a,b].

All of the considered integrals contained in the second group are called
improper integrals ofthe second kind.
Example 4.69. Investigate values of the parameter p for which the integral

r dx
— 7 CONverges.
JoXP
[0 Consider the case when p =1 The limits of integration are constant, but

;i\>/<), Is unbounded near 0 since lim-—=+00. So the integral of the second kind is

XL

concerned.
% =% = I(n00p= fim(in(s =
Hence, if p = 1, {!)XD IS convergent.

Now let p >0, ppl.



xF
If0<p<l, lim

8—+0 l_pa

1
Thusif O0< p<1, J‘ﬁp 1S convergent.
X

| = lim B
el T (po1)ar

1
Thusif p>1, J‘ﬁp 1s divergent. m
X

0

1

6—+0

I-p
If p>1 lim{ al

ngi%[_(Pl—l)+_(p—1)5"'ljzoo

3

So we proved that I

_p=
1 X

= dx  |diverges, if p>1,
conveges, if 0< p<1.

Properties of improper integrals

1. Suppose, f(x) and g(x) are functions defined on [a,®) and integrable on

every closed interval [a,n]c[a,0), where © may be a constant or infinity.

Moreover assume the improper integrals I f (x)dx and I g(x)dx converge. Then, for

any real constants A ,%, the improper integral J‘(}”l f(x)+ ng(x))dx converges and

a

[0 () pao i (o .oyt

The expression A,/ (x)+X,g(x) is called a linear combination of f(x) and g(x).
Thus, the improper integral of a linear combination of f(x) and g(x) is the linear

combination of improper integrals of the considered functions.
2. If o(t) is a smooth strictly monotonic function on A, =[o,B] with

o(a)=a, ltl_r)glcp(t) = and (A,)cA,, A, =[a,0) ( the range of @ is a subset of ),

where ® may be a constant or infinity, then

This formula defines the rule for integration by substitution for improper integrals.
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3.If u(x) and v(x) are continuous on [a,®) where ® may be a constant or
infinity, and '(x) and v'(x) are piecewise continuous functions on every closed
interval [a,n]c[a,®) then

Tudv =u- v|j — Tvdu .

a a

The formula is referred to as the rule of integration by parts for improper integrals.

Note, the integrals Iudv and |vdu are defined in the improper sense. u v|(: can be

a a

interpreted as u - V|, = lim(u(n)v(n) - u(a)v(a)).

-0
: : T odx
Example 4.70. Find the integral I
> xInx

or verify its divergence.

0 Apparently, the integral is an improper integral of the first kind because of

boundedness of the integrand function f (x) = and infinite interval of

xlnx
integration [2,+ ). Then

+0 1
= lim

'! xInx md xlnx

Note, dlnxzﬁ. Thenlet t =Inx , we get

X
t=Inx,
y| Inn
i dx _“ ) )
lim _|dt = x =lim | —=lim ln|t” "~ 4o
N—>+o0 2 xinx x=2%¢=In?2 N—>-+o0 { N—>+o0 2
x=n=t=Inn
+00
Hence, I is divergent. m
> XInx

Example 4.71. Find the integral I xe “dx or verify its divergence
0

0 The integral j xe “dx 1s an improper integral of the first kind. Consequently,
0

according to the definition
n

Ixe'xdx = lim | xe “dx .
0

N—>+w0
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n
The integral jxe‘xdx 1s a proper integral (definite integral) that can be taken by
0

means of the method of integration by parts. Then taking x for # and e “dx for dv

we have
N u=x du = dx . NI S
nll)rgo xedx=| g, _ o gy sz‘e-xdx=_e-x =nlggo{—xe . +Ie dx |=
0 0
) ( T n) 2
= lim |—xe™| - =—.
T—>+00 0 0 e
To calculate the limit lim 4 the L Hopital’s rule can be used:
nN—>+0 o
! =1
im D=1 lim-——=0.m
N>+ @ n (e ) =—-¢ N+ o

In most cases it is not necessary to know an exact value of an integral. We just
focus on the fact of convergence or divergence of a considered integral.

For this reason, the following theorem can be applied

Theorem (Comparison Theorem). Suppose, f(x) and g(x) are defined on

[a,0) and integrable on every closed interval [a,n] < [a,0).
Thenif 0< f(x)< g(x) on [a,0)

1. Convergence of I g(x)dx implies convergence of j f(x)dx.

2. Divergence of I f(x)dx implies divergence of I g(x)dx.

Corollary. Suppose, f (x) and g(x) are defined on [a,co) and integrable on
every closed interval [a,n]c[a,0). Moreover 0<f(x)<g(x) on [a,0) and

/()

g(x)#=0Vxela,o), im——==k exists.
(920 vs<fuo). L2
Then
1. Convergence of I g(x)dx provided that 0<k <o implies convergence of
[£(x)ax.

a
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2. Divergence of Ig dx provided that 0<k <o implies divergence of

jf(x)azx.

a

In particular case, when lim fg ; 1, both integrals j. f(x)dx and jg(x)dx
X—>0 g x
converge or diverge simultaneously.

+00

Example 4.72. Examine j —— for convergence.
Inx

O To 1dentify convergence or divergence we should compare behavior of the
given integral with an integral whose convergence or divergence is already proved.
Note, the inequality x > Inx holds for Vx & |[2,+). This fact can be illustrated

graphically (pic. 4.20).

2 4 6 8 10

X

Pic. 4.20

Consequently l < L Now iflet f(x)= 1 and g(x)= 1 then according to the
Inx X In x

400

theorem divergence of J‘ﬂ implies divergence of the given integral j— m
Inx

. dx
Example 4.73. Examine J‘ﬁ for convergence.
—i/x

1 1 :
0 —=——= can be expressed as —————, where O(-,-) is a polynomial of
Jx=3Ux Q(\/x \3/x) )

the listed arguments. As we know the leading term ax of a polynomial

154



P(x)=ax'+a_x""+..+a, determines its behavior at infinity. Thus behavior of

1 . . 1
———— can be compared with behavior of —= . Indeed
Jx =3x

N

1
lim ‘/;—%/_ = lim ———— \/;
X—>+00 1 X—>+00 \/_ J_

X

+o0 dx ) +o0 dx )
Si —— diverges | —— also diverges. m

Absolute and conditional convergence of improper integrals

Def.: The improper integral I f (x)dx converges absolutely if the integral

Tl f (x)|dx converges.

Example 4.74. Examine J‘coszx dx for absolute convergence.

o Consider the integral J-lcosxidx i zx} takes only nonnegative values. So
X

: . cosx| 1
we can apply the Comparison theorem. Since [cosx|<1 , <—. Then
X X
COSX Fcosx
I dx converges because I— converges. Hence the given integral I dx
x? x?

1
converges absolutely. m

1

Def.: If an improper integral converges but not absolutely, we say that it
converges conditionally .

40 .
Consider the integral I SBY x  The integral is an improper integral of the first
X

2
kind. Applying the definition and the method of integration by parts for improper
integrals we have
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dx
¢ sin =3 M==3
X g sin x X X
e =
4 Mo dv=sinxdx v=-cosx
2 3

N> x n—>e° n X

n 400
) COSX CoSX . CcoS COS X
=lim| — | I dx =11m[— n—O]—J‘ —dx,
x |— E T
2 2

, , cosn 1s bounded
lim [— €0 ﬂ] =lim [— cosm 1] o8 =0. Absolute convergence of
n

N> N>
L ! —->0,n—>w
n

COS X :
I —dx was proved earlier.
' X

2

. €sin
However, the integral J. X dx doesn’t converge absolutely. Indeed,

n X
2

Sin x

X X

+0o0
r
2

deISinzxdx:T%dx:%T%_%f 052x
2 2 2 >

+00 +o0
The integral I— diverges and the integral I Cos2x dx diverges. So if at least
X

2 2
one of the integrals on the right hand side of the inequality diverges then the integral
on the left hand side diverges as well.

+0
COS2x
Convergence of J.

dx can be verified by use of Dirichlet’s test.
X

2

Dirichlet’s test claims that if there exists a number A such that <M for

[ ()

every nefa,+w) and g(x) is monotonically decreasing provided that lim g(x)=0

X—>=+00

then I f(x x)dx converges.
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Exercises

1. Evaluate the integrals or verify its divergence:
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9.
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