СОДЕРЖАНИЕ

	Стр
OT ABTOPA	3
ГЛАВА 1. ВВОДНАЯ	5
ГЛАВА 2. ЛЮДИ	11
ГЛАВА 3. НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ УСТОЙЧИВОСТИ	62
1. Несколько определений	62
2. О проблеме абсолютной устойчивости	64
3. Иннорный признак абсолютной	
устойчивости	69
4. Различные виды динамических систем	76
5. К вопросу о необходимых и достаточных	
условиях абсолютной устойчивости	82
6. К исследованию устойчивости динамики	
следящего электропривода	86
7. Приложение	89
ГЛАВА 4. ДВИЖЕНИЕ ЛЕТАТЕЛЬНОГО	100
АППАРАТА В ВОЗДУХЕ	100
1. Суть задачи	101
2. Математические модели	109
3. Устойчивость	115

ГЛАВА 5. ЯВЛЕНИЕ ЭЛЕКТРОПЛАСТИЧ-	
НОСТИ	122
1. Описание явления	122
2. Математические модели	129
3. Устойчивость	136
ГЛАВА 6. СЛЕДЯЩИЙ ЭЛЕКТРОПРИВОД	140
1. О применении и принципах работы	
следящего электропривода	140
2. Математические модели	142
3. Устойчивость	155
ГЛАВА 7. КОСМИЧЕСКИЕ ТРОСОВЫЕ	
СИСТЕМЫ	166
1. Перспективы использования космических	
тросовых систем	166
2. Математические модели пространствен-	
ного движения двух связанных объектов	173
3. Математические модели относительного	
движения объектов связки в орбитальной	
системе координат	184
4. Математическая модель управляемого	
компланарного движения связанных	
объектов в безразмерных переменных	192

ГЛАВА 8. ВХОЖДЕНИЕ КОСМИЧЕСКОГО	202
КОРАБЛЯ В АТМОСФЕРУ	203
ГЛАВА 9. ТЕХНОЛОГИЯ СЕЙСМОРАЗВЕДКИ ГЕОНОД1. О сейсморазведке углеводородов на	209
шельфе	209
2. Технологии разведки месторождений	
углеводородов на шельфе	211
3. Сравнение различных технологий	
сейсморазведки	214
4. Некоторые особенности технологии	
ГЕОНОД	217
5. Обнаружение объектов с помощью	
технологии ГЕОНОД	222
питература	232