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PART I. LINEAR ALGEBRA

CHAPTER 1. MATRICES AND MATRIX OPERATIONS

1.1. NUMERICAL MATRICES

An mxn matrix A is a set of m-n numbers, represented by a rectangular

array of m rows and » columns:

a, dp In
a a a
21 22 2n . o
A=| or A4=(a,),i=1,..m; j=1..n.
aml amZ amn

Numbers, which form the matrix, are called matrix elements: a, — element, that is

placed on the intersection of the i-th row and the j-th column. Matrix elements are

expected to be real numbers.

Example 1.1. Determine matrix sizes m and »:

1 0
1 0 4 2

A=|2 3|, B={ ] c=(1 2 3), d:[l}
36 8 1 2
4 2

O Matrix A has sizes 3x2,matrix B — 2x4, ¢ —1x3, d-2x1.1
Two matrices A and B are called equal (A= B) if they have the same sizes
(mxn), and their corresponding elements are equal:

a,=b,, i=L..m; j=1..,n.

In general case, a matrix (with sizes mx n) is called rectangular. In particular,
if a matrix consists of a single column (n=1) or a single row (m=1), it is called
column-matrix or row-matrix (or simply column or row) respectively. Row-matrices
and column-matrices are frequently denoted by lowercase letters (in example 1.1: ¢ —
row, d — column). A matrix of sizes 1x1 is simply a number (the only element of a
matrix).

Matrix with the same number of rows () and columns (#7) is called square

matrix (of n-th order). Elements a,,,q,,,...,a,, form the main diagonal of square
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matrix (dashed line on Fig. 1.1 which connects the upper-left corner of the matrix

(element a;,) with the lower-right corner (element a,)). The diagonal, which
connects the lower-left corner (element a ) with the upper-right corner (element

a,,), 1s called secondary.

Secondary diagonal

n

a, a,

“a_ |Main diagonal

nl n
Figure 1.1
Square matrix
a, 0
e 0 0{22 0 ’
0 0 a

with zero non-diagonal elements 1is called diagonal, and denoted by
diag(a,, ay,,...,a,,).

A special case of square matrix is a matrix

1 0 0

0 1 0
E= ) ,

0 O 1

which is called identity (of n-th order) matrix. It is denoted by £ (or £).

If all elements of a square matrix which are situated below (above) main
diagonal are equal to zero, such a matrix is called upper-triangular (lower-
triangular). Fig. 1.2 demonstrates diagonal and triangular matrices (now and later we
will suppose that matrix’s part denoted by O symbol consists of zero elements, and
parts denoted by * symbol and lines consists of arbitrary elements). Notice that a
diagonal matrix, particularly an identity matrix, is a lower and an upper-triangular

simultaneously.

11



Diagonal Upper-triangular Lower-triangular

NN R

Figure 1.2
Matrix with all elements equal to zero is called zero matrix.

Example 1.2. Define matrix types

1 2 1
0 0 0 00 0 0 1 0
A= ,B=|0 4 5|,C= , D= ,E= ,
0 0 0 1 0 0 0 0 1
009
1 00 1 0 0 2 0 0
F=l0 1 0|, G=|2 3 0|, H=|0 2 0
0 0 1 45 6 0 0 1

A — rectangular zero matrix of sizes 2x3;
B — 3" order upper-triangular matrix;

C — 2™ order lower-triangular matrix;

D — 2™ order square zero matrix;

E — 2™ order identity matrix;

I — 3" order identity matrix;

G — 3" order lower-triangular matrix;

H - 3" order diagonal matrix. M
1.2. MATRIX OPERATIONS
1.2.1. Matrix Addition

Let 4=(a,) and B=(h,) be matrices of the same sizes mxn. Matrix
C=(c,;) of the same sizes mxn is called the sum of matricesA and B if its
elements are equal to the sum of the corresponding elements of matrices 4 and B:

c,=a,+b,,i=1..m; j=1..n.

12



The sum is denoted by C = 4+ B. Matrix addition is defined only for matrices of the
same sizes and is calculated element-wise. From the definition it comes that it is

possible to sum only matrices of the same sizes: e.g. it is impossible to find sums

sl o)

Example 1.3. Find the sum of two matrices

1 2 0 1
5 6 0 0

O Adding the corresponding elements, we get

1 2 0 1 1+0 2+1 1 3
C=(3 4|+|1 O0|=|3+1 4+0|=(4 4|. W
5 6 0 0 540 6+0 5 6
H_J \ J

(3x2) (3x2) (3x2)

1.2.2. Multiplication of Matrix by Number

A product of a matrix A= (a,) and a number ) is the matrix C =(c;) of the

same sizes as matrix A4 which elements are equal to the product of number A and the

corresponding element of matrix 4:

c,=h-a;, i=l...m; j=L...n.

Product is denoted by A-A or A-X. Multiplication of a matrix by a number is
done element-wise. It is possible to multiply any matrix by a number: each element
should be multiplied by this number.

1 2

Example 1.4. Find the product of matrix A=|3 4 | and number 2.
56

0 Multiplying each element of matrix 4 by 2 we get

13



| 1-2 2.2 2 4
C=2-A=A4-2=2-3 4|(=(3-2 4-2|=|{6 8| 1N
56 5-2 6-2 10 12

Matrix (—1)-A is called opposite matrix of 4 and denoted by(—4). Sum of
matrixes B and (—A) is called difference and denoted by B— 4.

To find difference B — A it is necessary to subtract elements of matrix A from
the corresponding elements of matrix B. Subtraction is correct only for matrixes of
the same sizes.

Example 1.5. Let

1
A=|3
5

L)
!
Il
oS = O
o o =

Find differences B— 4 and 4A—B.

O Subtracting the corresponding elements, we get

1y (1 2 (0-1 1-2) (-1 -1
B-A=1 0|3 4|=|1-3 0-4|=-2 -4,
0) (5 6 5 0-6) (-5 -6

1-

0-
0 1 1-0 2-1 11
-1 0 3-14-0(=(24|. =
0 0

5-06-0 56

W W =
AN BN

0
1
0

There are two linear matrix operations:

Linear matrix operations

1) matrix addition;
2) multiplication of a matrix by a number.
Properties of linear matrix operations coincide with the properties of addition

(subtraction) of algebraic expressions (e.g. polynomials) and multiplication of an

algebraic expression by a number.

14



For any matrices 4, B, C of the same sizes and arbitrary numbers o,  the
following equations are correct:
1) A+B=B+A4,; 5) (a-B)-A=0o-(B-A4);
2) (A+B)+C=A+(B+C); 6) 1-4=4.
3) a-(4+B)=a-A+o-B;
4) (oc+[3)-A=0c-A+[3-A;
1.2.3. Matrix Multiplication
Let matrix A= (a,) of sizes mx p and B=(b;) of sizes pxn. A matrix C of

sizes mxn with elements ¢, that are calculated by the following formula

¢, =ay-b,+a,b,,+..+a, ‘b, i=L..m; j=1..n,
is called a product of matrices A and B and denoted by C = AB.

Multiplication of matrix A by matrix B is defined only for consistent matrices,
i.e. matrices that satisfy the following property: number of columns of matrix A4 i1s

equal to number of rows of matrix B:
C=A4-B.

mxn mxp pxn
Let’s consider the procedure of finding a matrix product in detail.

To find the element ¢, on the intersection of the 7 -th row and the j -th column

of matrix C it is necessary to separate out the i-th row of matrix 4 and the j-th

column of matrix B. They consist of the same number of elements because
matrixes 4 and B are consistent.

Then it is required to find the sum of all pairwise products of the corresponding
elements: the first element of the i-th row is multiplied by the first element of the
Jj -th column, the second element of the 7 -th row is multiplied by the second element

of the j-th column, and etc. Finally, the results are summed up.

In the product A-B matrix A is called the left-side multiplier for B, and it 1s

said that matrix B is multiplied by matrix A4 from the left. In a similar manner matrix

15



B is called the right-side multiplier for A4, and it is said that matrix A is multiplied
by matrix B from the right.

Note that in general case 4-B# B-A, but there are square matrices which
product is unaffected by multiplier permutation.

Matrices A and B are called the permutation matrices if

A-B=B-A.

Permutation matrices can only be square matrices of the same order. In particular, it
can be showed that diagonal matrices of the same order are permutation matrices.

For every square matrix A of order » the following equations are correct:

A-E=E-A=A4

where F is an identity matrix of order » . In other words, an identity matrix and any
square matrix of the same order are permutation matrices.

For every matrix A the following equations are correct

A-O=0 and O-A4=0

where Ois a zero matrix of the appropriate order, i.e. a square zero matrix and any

square matrix of the same order are permutation matrices.

Properties of matrix multiplication

Let A be an arbitrary number; A, B, C — arbitrary matrices for which the
operations of multiplication and addition on the left side are defined. Then the
operations on the right side are defined and the following equations are correct:

1) (4-B)-C=4-(B-C);

2) A-(B+C)=A-B+A-C;

3) (A+B):C=4-C+B-C,

4) K-(A-B)=(7»-A)-B.

| . Find products A-B and B- 4.

[

1

1 21
Example 1.6. Let A= [O ], B=|0
1

O By the definition of matrix multiplication we get

16



10
(U2 Y[ (11204 L 10420411 (2 3)
~ = (0 1 2 l0141:042-1 0-0+1-1+2-1) \2 3)
X x2 1 1
2x2
Loy 1-140-0 1-2+40-1 1-1+0-2) (1 2 1
B-A=|0 1| =[0-1+1-0 0-2+1-1 0-1+1-2(=|0 1 2.
oo 01 2
»2 23 (11 1-1+1-0 1-2+1-1 1-1+1-2) (1 3 3

N
3x3

Both products 4- B and B- A are defined, but they are matrices of different sizes, 1.€.
A-B#B-A. 1

Example 1.7. Let

X

121
A=, | o) x=|m | b=00 2 3)

X3

Find the products A-x, b-x, x-b.

O By the definition of matrix multiplication we get

X
y 1 2 1\ | '] (1x+2-x,+1-x) (x+2x,+x,
X = | X = = ’
== (01 2)| 77| (0-x+1x,+2x, X, +2x,

x '
3 2x1
‘xl
b-x=(1 2 3)- X, =(1-xl+2-x2+3-x3)=x1+2x2+3x3;
e N
1x3 3xl X, ix1
X, X, 2x 3x
x-b=|x,|-(1 2 3)=|x, 2x, 3x,|. W
3 ba
X, X, 2x; 3x,

3x3

1 2 0 0 1 0 0 0 :
Example 1.8. LetA = , B= , E= , O= . Find
3 4 11 0 1 0 0

the productsA-B, B-4A, A-E, E-A, B-O, O-B.

[0 All the matrices are the 2™ order square matrices. Hence, all products will be

square matrices of the same order.

17



By the definition we get

e I 2)(0 0} (1:0+2:1 1.0+2:1) (2 2
3 4)\1 1) (3:0441 3-0+4-1) 4 4
5 0 0) (1 2) (0:1+0:3 0:2+0-4) (0 0
1 o1)\3 4) 11413 1-2+41-4) (4 6
A-E=E-A=A,
e 1 2)(1 0} (1-1+2:0 1.0+2:1) (1 2
13 4)lo 1) (3.144.0 3.0+4-1) \3 4
o 1 0 (1 2) (1'1+0-3 1-2+0-4) (1 2
o 1)\3 4) 101413 0-2+1-4) |3 4

A-O=0 and 0-4=0,

R A O T

Example 1.9. Find the products A-B and B- 4:

4
1 2 -1 3
a) A=(1 2 3),B=|5]; b) A= , B=
¢ 301 1

A_61 B—_4_1‘ dA_321 Bo(l 3
¢) —[2 1], —[_2 1]3 ) _[O | 2]: =(1 3).

O a) The product A- B is a number:

1x1

4
A-B=(1 2 3)-|5|=(1-4+2-5+3-6)= (32) =32,
1x3 6 v

HK_J
3x1

but the product B- A — is the 3™ order square matrix:

4 4-1 4.2 4.3} (4 8 12
B-A=|5|(1 2 3)=51 52 5.3|=[5 10 15
6 b3 6-1 6-2 6:3) (6 12 18

H/_J
3x1 3x3

It 1s obviousthat 4A-B# B- A;

18
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[1 2] [—1 3] [1-(—1)+2-1 1-3+2-1] [1 5]
3 1 I 1 3-(-D+1-1 3-3+1-1 -2 10

2x2

2x2 2x2
5o -1 3) (1 2\ ((-D)-143-3 (=D-2+3-1) (8 1
11 1)3 1) 0 11413 1-2+1-1 ) (4 3)
—
2x2 2x2 2x2

Both products are square matrices of the same order, but 4-B=B-A4;

[6 1] (—4 —1] [6-(—4)+1-(—2) 6-(—1)+1-1] [—26 —5]
) A-B= : = = ,
2 1)(=2 1) (2:(=8+1-(=2) 2-(-D)+1-1) {-10 -1

2x2

2x2 2x2

B-A= -4 -1 6 1 _ (-4)-6+(-1)-2 (=4)-1+(-1)-1 B -26 -5
‘ _[ 1]-[2 1]_[ (-2)-6+1-2 (-2)-1+1-1 ]_[_10 _1]'

The results of multiplication are equal,i.e. 4-B=8-4;
d) the product A- B cannot be found because the number of columns of matrix

A (three) is not equal to the number of rows of matrix B (one). So, it 1s impossible to

multiply matrix 4 by matrix B from the right. At the same time, it 1s possible to

multiply matrix 4 by matrix B from the left:

B-4=(1 3)-(3 2 1]:(1-3+3-o 1-243-1 1-143-2)=(3 5 7). ®

——= 10 1 2
1x3

1x2
2x3

Example 1.10. Find (4-B)-C, 4-(B-C), A-(B+C), A-B+A4-C,

oo Y by
O Let’s find
e 36 516 2 D6 9 )
oy I 96 JHCIE B )
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e (0 00 -6 I )
enaeoy D6 6 U6 0 ECHED)

Note that (4-B)-C=A4-(B-C)and 4-(B+C)=4-B+4-C. 1

Power of matrix

Multiplication 4-A4 (matrix 4 by itself) is defined for any square matrix A4 (of

order n). So, it is possible to define any integer nonnegative power of a matrix, as
A =FE, A=A, A*=A- A, A =A*A,. 6 A"=4""-4, ...
Note that the ordinary properties of a power with natural index are correct:
AR A = AL AF = gFH (Ak)l:Akl
Polynomial of matrix

Having defined the operations of matrix addition, multiplication by a number,

and power of a matrix it is possible to get polynomial of matrix. Let
p,(X)=a,+ax+a,x’+..+a,x" be apolynomial (power m) of variable x where

A is a square matrix of order »n . Expression

p.(AD=a,E+ad+ad +. +a,A A"

A

is called the polynomial of a matrix A.Polynomial p, (A) is a square matrix of the

n -th order.

1 2
Example 1.11. Find 4’ given that 4= [1 1].

O By the definition of a power of a matrix we get
Lo(1 2 (1 2) (1 2) (1 2) (3 4)(1 2) (7 10
AP = = . : - : - u
1 1 1 1){1 1)1 1 2 3)\1 1 5 7
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Example 1.12. Find p,(A) given that p,(x)= x*~5x+3, A= {

[0 Using the definition of the polynomial of a matrix:

2

pz(A) = {_3 3

(71 -5
=15 12

-1

2

10 -5
-15 15

o)

]+

2 -1
-3 3

3 0)
0 3/

1
+3- 0
o

0 0
0 0

|

2

N

1.2.4. Matrix Transposition

For any matrix

a, ap, - a,
y Ay Ay 2dy,
amlamZ ”amn
a matrix
a, ay - d,,
AT = Ay Ay Ay
a, d a

nY%2n"""

which can be obtained from matrix 4 by replacing its rows with the corresponding
columns or the columns by the corresponding rows. This matrix is called a

transposed matrix.
To get matrix A” from a given matrix A, the first row of matrix A4 is written as
the first column of matrix A", the second row of matrix A is written as the second

column of matrix A4”, and so on. This operation is called the transposition of matrix
A.
A square matrix is called symmetric if

A" =4

and antisymmetric if
A" =—-A4.
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The elements of a symmetric matrix, placed symmetrically with respect to the
main diagonal, are equal. The elements of an antisymmetric matrix, placed
symmetrically with respect to the main diagonal, have opposite signs and all the
diagonal elements are equal to zero.

Properties of transposition operation

Let A be an arbitrary number, 4, B — arbitrary matrices for which operations

of matrix addition and multiplication on the left side are defined. Then the operations

on the right side are defined as well and the following equations are correct:
1) (x-A)T =n- A"

) (4+ B) =A"+B";

3) (4-B) =B"- 4 ;

(47) =

Example 1.13. Find 4", B", C", for

4)

0 4 -5 1 45
1 2 3
- . B=|-4 0 61|, C=|4 2 6]
01 2
N/ 5 -6 0 5 6 3

2x3

O By the definition during the transposition the first row of matrix 4 becomes the

first column of matrix A", the second row becomes the second column:

1 0
A" =2 1]
3 2

(3x2)

Similarly, we get

0 4 5 1 4 5
B'={4 0 -6|, C'=|4 2 6]
-5 6 0 56 3

As BT =—-B, it means that B is antisymmetric. As C* =C, it means that C is

symmetric. B
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Example 1.14. Find matrices (K-A)T, r-A" (A+B)T, A" + BT, (A-B)T,

|
BT AT, (A7) for k=2, A= 21 52 9
3 4 7 8

O We have
(2A)T_212T_2 4Y (2 6
- 3 4)) (6 8 |4 8)
i} , .
1 2) (5 6 6 8 6 10
(A+B)T= + = = ,
3 4) |7 8 10 12 8 12
(AB)T_12 56T_19 22) (19 43
(13 4)\7 8)| |43 50 (22 s50)
Note that

S B S
o 6 DL e
ot 0 D6 R Do

AR ) REHRH

ie. (1-A) =n-A", (A4+B)Y =A"+B", (A-BY =B" A, (') =4. m

1.2.5. Block Matrices and Block Matrix Operations

A numerical matrix 4 of sizes mxn divided by horizontal and vertical lines

into blocks (cells), which represent matrices, is called a block (cell) matrix.

The elements of a block matrix A are matrices A; of sizes m xn,,

i=12,.,p, j=12,...,q,sothat m +my+...+m,=m and n+n,+...+n =n.
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The operations of addition, multiplication by a number, and matrix
multiplication for block matrices are performed by the same rules as for ordinary
matrices, the only difference is that blocks are used instead of elements.

If numerical matrices 4 and B of same sizes are equally split into blocks

A= (AU.) and B = (sz)° then their sum C = A+ B can be similarly split into blocks
C= (CU. ) , so that for each block the following equation is correct: C;, = 4, + B, .

If a block matrix Az(AU.) 1s multiplied by a number, we get matrix

A= Ah=(24,).

ij
During the transposition of block matrix, we should transpose both the block

structure and the blocks, ¢.g.

7
s A11 A12 _ A1T1 Ale
A21 Azz Asz Asz ‘

Example 1.15. We have the following block matrices

2 314 1 110
Ay | A By, | By,
A={3 4|5]|= and B=|2 1]|2]|= :
1 56 Ay | Ay 3 0l By | By

Find matrices C =4+ B, D=5B, B".
O Matrices 4 and B have blocks of equal sizes: blocks 4,, and B,, have sizes
mxn, =1x2; blocks 4, and B, - mxn,=1x1; blocks 4, and B,

m,xn, =2x2;blocks 4,, and B,, — m,xn,=2x1.

C,.|C
Matrix C = A+ B will have blocks of the same sizes: C =| — 2| For
C21 C22

each block we find:

C11:A11+Bu:(2 3)+(1 1):(3 4); C122A12+Bu:(4)+(

3 4 2 1 5 5 5 2 7
C21:A21+lez 45 + 30 = 7 5 5 C22:A22+Bzzz 6 + 1 = 7

Hence, matrix C will have the following form:

o
~—
I
~—~

&
~—
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N A~

3 4
Cy | Gy

C=|5 5 = .
7 5 Cyu | Cp

Matrix D =5B will have blocks of the same sizes as B:

D, =5B,=5-(1 1)=(5 5); D, =5B,=5-(0)=(0);

D—SB—521—105' D5352 10
2720 =2" 0 15 s o) =20 =0 5 5 |

Therefore, matrix D will be

5 5|0
Dll D12

D=[10 5]10]|= .
15 0l s Do | Dr

By the rule of block matrix transposition we get
112 3
T T
BT — Bll BZI — 1 1 O ]
B, | Bx '
012 1
Multiplication of block matrices
Block matrices 4 and B are called consistent if decomposition of matrix
A=(4,) into blocks by columns is equal to the decomposition of matrix B=(B, )
by rows, i.e. blocks A, have sizes m x p,, and blocks B, have sizes p, xn,

(k=12,...,5). Consistent block matrices’ elements 4, and B, are consistent

matrices.
Product C =A-B of consistent block matrices A and B 1is a block matrix

C= (CU.) which elements are calculated by the following formula:
C,=A,B,+A4,B,, +...+ A.B, .
It means that block matrices that are divided into blocks in an appropriate way
can be multiplied by the common way. To get the block C; of the product, we need to

separate out the 7-th row of blocks of matrix 4 and the ;-th column of blocks of
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matrix B. Then we should find the sum of pairwise products of the corresponding

blocks: first block of the i -th row is multiplied by the first block of the ;-th column,
the second block of the i-th row is multiplied by the second block of the j-th row,

and etc. Finally, the results of multiplication are summed up.

Example 1.16. We have block matrices

1 1]0
All A12 Bll BIZ
= and B=|2 1|2|= :
A21 A22 3 O 1 BZI BZZ
Find the product C = AB.
O Matrix 4 is divided into blocks: A4, of sizes m,x p, =1x2; A, — m x p,=1x1;

2 3
A=|3 4
4 5

N | &~

Ay — myx p=2x2; A, — myx p,=2x1. Matrix B is divided into blocks: B, of
sizes pyxmn =2x2; B, — pxn,=2x1; B,y — p,xn=1x2; B,, — p,xn,=1x1.
Block matrices 4 and B are consistent. Matrix A4 is divided by columns into two

and one (counting from the left), matrix B 1s divided by rows into two and one

(counting from the above). Therefore, product AB is defined. Matrix C =AB will

Cl 1 Cl 2

have blocksC =
[CZI C22

] . For each block we get:

1
Cll = AllBll + AIZBZI :(2 3)'(2

D+(4)-(3 0)=(8 5)+(12 0)=(20 5);

C12 = AIIBIZ + AIZBZZ = (2 3) [

3 4 1 1 5
C21 = AZlBll + AZZBZI = 45 ) 1 + 6 '(3 O) =
11 7 15 0 26 7
= + =
14 9 18 0 329

J
mamesncll Y0Cho-(H-C)
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Hence, matrix C will be

1.2.6. Transforming a Matrix to Echelon Form

Elementary transformations of a matrix are the following transformations:

1. Swapping two columns (rows) of matrix.
2. Multiplying the elements of a column (row) by the nonzero constant.
3. Addition of the elements of a column (row) multiplied by a constant

to the elements of another column (row).

Matrix B which is found from the initial matrix 4 by a finite amount

of elementary transformations is called an equivalent matrix. 1t is denoted by A~ 5.

A square matrix obtained by a finite amount of elementary transformations

from an 1dentity matrix, is called an elementary matrix.

Echelon form of matrix:

01 =

0
0
0 - 0
0 - 0
0 - 0

0
0

1

0

(1.1)

The height of each "step" is a row, symbol "1" denotes unity elements of a

matrix, symbol "#" denotes arbitrary elements, other elements are equal to zero.

Any matrix can be transformed into echelon form. It is enough to use

elementary transformations of matrix’s rows.
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Remarks.
1. Matrix is also in echelon form if the elements denoted as "1" in (1.1), are
arbitrary nonzero numbers.

2. It 1s considered that zero matrix is in echelon form.

Algorithm for transformation matrix to echelon form

To bring a matrix to echelon form (1.1) we need to make the following

operations:

1. Choose a nonzero element (pivot element) in the first column. If the row
with the pivot element (pivot row) is not the first, it should be placed on the first
place (transformation of the I type). If the first column has no pivot element (all
elements are equal to zero), this column is excluded and we continue the search of
the pivot element in the remaining part of the matrix. Transformations finish when
all columns are excluded or all elements in the remaining part of the matrix are
equal to zero.

2. Divide the elements of the pivot row by the pivot element (II-type
transformation). If the pivot row is the last, transformation procedure should be
ended.

3. All the elements of the pivot row should be multiplied by a coefficient and
added to all rows below (transformation of the III type). The value of the
coefficient is chosen in order to nullify elements below the pivot elements.

4. After the exclusion of the row and the column that have the pivot element
we return to step 1, and all operations should be applied to the remaining part of
the matrix.

Example 1.17. Bring matrix to echelon form

39 0 2 3
A= , B= . C=
2 4 2 46

O In the first column of matrix 4 we choose the pivot element g, =3 # 0. Divide all

AN W N
~N W

: 1
elements of the row by ¢, =3 (or multiply them by — = 1 ):

all
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306

Add the first row multiplied by (-2) to the second row:

1 3)(=2) (1 3
(2 4]4J ~(o —2]'

The first row and the first column are now excluded from further examination.
There is the only element (=2 ) in the remaining part of the matrix which 1s chosen as

a pivot. Dividing of the last row by the pivot element we get matrix in echelon form

ol i)

Transformations are finished because the last pivot element is situated in the
last row. Note that the obtained matrix is upper-triangular.

In the first column of matrix B we choose the pivot element b, =2 =0, swap

rows, and divide elements of the pivot row by the pivot element 2 :
s [0 23 4 6) (1 23
{2 46) o 23) 102 3)

There is no need to make step 3 of the algorithm because of the zero element
below the pivot element. We exclude the first row and the first column from the
examination. There is the pivot element 2 in the remaining part. Dividing the second

row by 2 we get the echelon form of the matrix

B~(1 2 3]~{1 2 3 ]
0 3) 01 15)

Transformations are finished, as the pivot row is the last.

In the first column of matrix C we chose the pivot element ¢, =2#0. The
first row is the pivot. Divide its elements by ¢, =2 and get

4 1 2
C= 5 1(~13 51
7 6 7
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To the second and to the third row we add the first one multiplied by (-3) and
(—6) respectively:
2\(-3) (=6) (L2
35| ~l0 |-1].
6 7 0 |=5
Pay attention that the obtained matrix is not in echelon form yet, as the second
step is formed by two rows (second and third) of matrix. After the exclusion of the
first row and the first column we search the pivot element in the remaining part. This
element is (—1). We divide the second row by (—1), and add the pivot row, multiplied
by 5, to the third row:

L2 1 2 1 2
[l |~|o 1](5)~|0 1].
0 5] (0 -5). 1 Lo o

We exclude the second row and the second column from the examination.
Further transformations are impossible because all columns are excluded. The

obtained matrix is in echelon form. W
Algorithm for transformation matrix to reduced echelon form

If we continue making elementary row transformations, it is possible to

simplify the matrix and transform it to reduced echelon form:

; 0 * - % (1.2)
0 0 0 0O 0 011
0 0 00 0 0 0 0 0
0 0 0 0O 0 0 0 0 0 0 0
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Symbol «1» denotes elements which are equal to one, symbol «*» denotes
elements with arbitrary values, other elements are equal to zero. All the other
elements in a column with «1» are equal to zero.

Example 1.18. Bring the matrix to reduced echelon form

o1 1111

0 001 21
A=

0 00010

0 000 00O

O Matrix is in echelon form.
Add the third row multiplied by (1) to the first row, and the third row
multiplied by (-2) to the second row:

01 1 1 11 01 1 1 0 1
0001 2 1% 00 0|1 01
A= ~ .
00001 0[(2)(-1) 000 0f[1 0
000000 000000

Now we will add the second row multiplied by (-1) to the first row. As the

result, we will obtain matrix in reduced echelon form (1.2):

001 1 10 1Y% (0[1 1000
00010 1|(-) {00 0[1 01|
0000710 000 0][1 0
000000 000000

Algorithm for transformation matrix to the simplest form

Any matrix by the elementary transformations (of rows and columns) can be

reduced to the simplest form:

1 «««- 0 0 - 0
0 -+ 1 0 « 0 E O
=7 T (1.3)
0 -+ 00 - 0 O O
0 00 0

mxn
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The upper-left corner of the matrix is an identity matrix of order r

(0<r<min {m; n} ), other elements are equal to zero. It is considered that zero matrix

is always in the simplest form (7 =0).
Any matrix can be reduced to the simplest form by the elementary

transformations of its rows and columns.

1 2 3
Example 1.19. Bring matrix 4 = {2 4 5] to the simplest form.

O Let’s choose the element a,, =1 as the pivot element. Add the first row multiplied

by (—2) to the second row:
L (2 3)(=2) (1 2 3
2 4 5) d 0 0 -1)

Then we add the first column multiplied by (—2) to the second row and the

first column multiplied by (-3) to the third row:
2 3)(jl 0 0
0 0 -1) 10 0]z
(2]
(-3)

Multiply all elements of the last column by (-1), and switch it with the second

o0 ey o
0 0 -1/ \0 1 0).
<) &

L S
Thus, the initial matrix A4 is reduced to the simplest form (1.3) by elementary

column:

transformations. l

1.2.7. Trace

The trace of a square matrix is a sum of the elements of its main diagonal.
A trace of a square matrix A of order n 1is denoted

tr 4= Zn:aﬁ :
i=1
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For any square matrices 4, B, C of the n-th order and vectors x,y of sizes

nx1 the following properties are correct:

1) tr(A+B)=trA+trB;
DtrAd=trA";

3) tr (ATB) =tr (BTA) =tr (ABT) = tr(BAT);

Matrix trace A4 is also denoted sp 4.

: 1 2 5 6 9 10
Example 1.20. Given that A= , B= , C=
3 4 7 8 11 12

1 3
X= [ ] y= [4] , 1llustrate correctness of properties of the trace of a matrix.

O 1) rA=1+4=5,trB=5+8=13, trA+trB=18,
tr(A4 B) t 6 8 18
=1r = N
r(d+ 10 12)° 0

1 3
2) trd=5, trAT=tr[2 ]zS;

4
, (1 3\(5 6 26 30
3) tr(4'B)=tr =tr =26+44=170,
2 7 8 38 44
, I 1 2)] . (26 38
tr(B"4)=tr =tr =26+44=70,
I 3 4)) 30 44
o~ (1 2Y(5 7] 17 23
tr(AB )=tr =tr =17 +53=70,
3 4)l6 8)] |39 53
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34

, 5 6 17 39
BA =tr =17+53=70;
7 8 23 53
4) t ! (3 4)|=t 3 3+8=11
=1tr +
2 6
3
[ =1-3+2-4=11;
4
1 1 21 2 5 10
5) t Axx 1 2) =tr = fr =27,
3 \3 4)(2 4 11 22
1 2 5
x" Ax = =(1 2) =27
3 4 11
1 2 9 10 413 454
6) tr(ABC)= = tr =1443,
3 4 11 12 937 1030
5 6 1 2)] 477 710
BCA =tr =1443,
78111234_ 649 966

CAB
11 12

7) ZZab =1:5+2:6+3-7+4-8=70=tr (45" ). m

=l j=l

m n
1.F0rA=[ ],
n m

a) A+2B; b) 24"

f) tr(BT-A); g

sl

EXERCISES

—n m
B:[ ]’
n+m n—m

~B: ¢) A-B=B-4; d) (4=B);e) tr(4” - B);

find:

1

}:U

1

601 698
= 1443;
(725 842]

1

2. Transform the matrix to echelon form: | m m n

n

n

m

) tr(A-BT); h) tr(A+B); )trd+trB.

1

n
m



CHAPTER 2. DETERMINANTS AND THEIR PROPERTIES

2.1. INDUCTIVE DEFINITION

Let 4 be an nxn square matrix. The determinant of a square matrix A4 is the
value, denoted by det A, that is defined from A4 according to the following rules:
1. The determinant of the first order matrix (n=1) A=(a,) is its only

element: det(a,)=a,.

all aln
2. The determinant of amatrix A=| : -. : | oforder n>1 is a value
anl e ann
detA=(-1)"a, M, +(-1)" a,M, +...+(-1) " a,M,,, (2.1)

where M, is the determinant of the (n—1)x(n—1) matrix formed by deleting the
first row and the j-th column of 4.

The determinant is denoted by surrounding the matrix’s elements with vertical
bars:

all
detA=|A|= :

a a

nl i nn
By this definition, we can talk about order of a determinant, row or column of
a determinant, omitting “of a matrix”. Thus, the first row of a determinant of order »

is the first row ag,,,4a,,,...,a,,0f a square matrix of order ».

If the determinant of a square matrix is zero, the matrix is said to be singular,

if the determinant of a matrix is nonzero, the matrix is nonsingular.
Calculation of the second—order determinant

By the definition, the second—order determinant is computed by the following

formula:
a, a
o 9
=d) Ay, — dppdy, . (2.2)
a, dy
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The second—order determinant is the product of the elements on the main

diagonal minus the product of the elements on the secondary diagonal (Fig. 2.1.).

a
Qe D
- +
Figure 2.1

Calculation of the third—order determinant

By definition and formula (2.2), the third—order determinant can be evaluated

by the following formula:

a, d, dj
Ay, dy Ay Ay

Ay dy dy|[=d;- —dy -

a32 a33 a31 33

Ay Gy Uy
(2.3)

=y Ay gy + A1 Ay Ay + Ay3 Ay Ay — U3 Ay Ay = Ay Gy Ay = Gy Ay Oy

Determinant (2.3) is a sum of six components, each of them is a product of
three elements from the different rows and columns of the matrix. Three of the
components have the positive sign and another three have the negative sign.

To remember formula (2.3), the triangle’s rule can be used: add three
products of the elements of the main diagonal and the elements in the vertexes of two
triangles, having a side parallel to the main diagonal, (Fig.2.2, a), and subtract
three products of the elements of the secondary diagonal and in the vertexes of two

triangles, having a side parallel to the secondary diagonal (Fig. 2.2, b).

Figure 2.2
Sarrus' rule can also be used, then the determinant can be computed by the
following scheme (Fig. 2.3): write out the first two columns of the matrix to the right

of the third column, so that you have five columns in a row, then add the products of
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the diagonals parallel to the main diagonal (going from top to bottom) and subtract
the products of the diagonals parallel to the secondary diagonal (going from bottom
to top).

Figure 2.3

Example 2.1. Evaluate the determinants

1 2 3 2 2 1
1 2
s 4 6], |1 10
3 4
7 -8 -9 02 1

O Using (2.2) and (2.3), calculate

i
- ~1-4-2-3=-2;

R X)

=14(9+267+35 ~3-4-7-2-5-(
=—36+84—120—84+90+48=—18

According to Sarrus’ rule,

S =N
o = N9

=2-1-1+2-0-0+1-1-2-0-1-1-2-0-2-1-1-2=2. 1
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2.2. COFACTOR EXPANSION FOR THE DETERMINANT

Let A be a square matrix of order n (n>1). The (i, j)-th minor of A, denoted

M, is the determinant of the (n—1)x(n—1) matrix formed by deleting the i-th

ij)

column and the j -th row of 4.
The (i, j)-th cofactor A, of A is the minor M, multiplied by (-1)":

i+j
A=(-1)"M,.
The determinant of 4 can be calculated as a sum of cofactors either along any

row or column of the matrix multiplied by the elements that generated them:

det 4= Zn:(—l)Hk a,M, = Zn:aikAik (i -th row expansion);
k=1 k=1

det A= ;(—l)k” a,M, = kZ—;anA]q (j -th column expansion).

The determinant of a triangular matrix (upper triangular, lower triangular or a

diagonal matrix) equals to the product of the elements of the main diagonal.

a, G, ... 4, a, 0
A = 0 a, A dy dp o
=l S =a,0y-.. q,,
O O ann anl anZ ann

The determinant of any identity matrix equals to 1.

Example 2.2. Evaluate the determinant of

2 1 0 0
e 0 1 3 2.
0 0 0 5
-1 2 0 0
O Let’s expand across the third row:

2 1 0 2 10
detA=0-A,+0- A, +0- Ay +5-4,=5-(-1Y"|0 1 3|=-5:/0 1 3
-1 2 0 -1 2 0
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Next expand along the last column of the remaining third order determinant:

2 1 0
a2 1
detA=-5-{0 1 3 =_5.( 0-A13+3-A23+O-A33):—5-3-(—1)23- 1 2‘.
-1 2 0

The second order determinant is calculated according to the equation (2.2):

det4=15- ; =15-(2-2-(-1)-1)=15-5=75. =

2.3. PROPERTIES OF DETERMINANTS
2.3.1. Main Properties of Determinants

1. The determinant of the transpose of any square matrix is the same as the

determinant of the original matrix: det 4= det(AT ) As a result, rows and columns of

the determinant are “equal™: any property that is true for the rows of a matrix would
be true for the columns as well.
2. If a row of a matrix is zero (all the elements of the row are zero), then the

determinant is zero: det(...0...)=0.
3. Interchanging any two columns of the matrix changes the sign of the
determinant to the opposite one (asymmetric property):
det(...a, ...a, ..)=—det(...q, ...a, ...).
4, If two rows of a matrix are equal, then the determinant is zero:
det(...a, ...q, ..)=01if a,=q,.
5. If two rows of a matrix are proportional, then the determinant is zero:
det(...a;...a,..)=01if a, =hAa, .
6. Multiplying a column by the constant multiplies the determinant by that

constant:

det(a, ... A-a, ...a,)=A-det(q, ...a, ...a,).
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7. 1f the j-th column is written as the sum of the two columns a, + b, then the
determinant is the sum of two corresponding determinants, where j-th columns are g,
and b, , respectively, and the other columns are the same:

det(...a; +b,..)=det(...a;...) +det(...h, ...).

8. The determinant is a linear function of each column:

det(..oc-a, +B-b,..)=o-det(...a,...) + B-det(...b,...).

9. If a scalar multiple of a column is added to another column, the value of the
determinant is unchanged:

det(..a,+A-a, ...a, .)=det(...q, ...a, ...).

10. The sum of the products formed by multiplying each element of any

column by the cofactors of corresponding elements of another column is zero:
Za,a.-Akj =0 for i#/.
k=1

From the formulas for row (column) expansion and Property 10, we have
2 0, i#]J, L 0, i#j,
a, A, = a,-A, = 24
Soctolgury, Botlmdl, @
Let A be a square matrix. The adjoint matrix of A, denoted by A*, is the
square matrix of the same order where each element is the (j,i)-th cofactor of the

matrix A: a; =4,.
The adjoint matrix can be computed by the following procedure:

1) replace each element of the original matrix 4=(a,) with corresponding
cofactor 4, = (-1)" M ; » thus obtaining the matrix (4, );
2) find the adjoint matrix 4", transposing the (4,) matrix.

From equation (2.4) it follows that A4™=A4"-A=detA-E, where E is the

identity matrix of the same order as 4.
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1 2
Example 2.3. Given that 4= [3 4], compare the determinant of 4 to the

4 3) 1 2)

1 2 1+3% 2+4A , ,
D= ;. F= , where A 1s a certain scalar.
3n 4) 3 4

2 1 3 4
determinants of the following matrices: A" Bz[ ] C =[ ]

O The determinant of matrix A was found in example 2.1: detA=-2. Let’s

evaluate the other determinants, using formula (2.2):

det(47) =]

3
‘=1-4—3-2=—2=detA,
4
according to Property 1;
2 1
detB = 43 =2-3-1-4=2=—det A4,

according to Property 3, since matrix B is obtained from matrix A by switching the

first and the second columns;
3 4
detC = - =3-2-4-1=2=—-det4,

according to Property 3, since matrix C 1is obtained from matrix 4 by switching the

first and the second rows;
1 2
detD = =1-41-2-3h=-2A=AdetA4,
3L 4A

according to Property 6, since matrix ) is obtained from matrix 4 by multiplying
the second row by the constant A ;

1+30 2+4)
3

det /" =

‘:(1+3K)-4—(2+4K)-3=—2=detA,

according to Property 9, since matrix /7 is obtained from matrix 4 by multiplying the

second row by A and adding the product to the first row. B
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1 2
Example 2.4. Given thatA:(3 4], B=|5 4 6|, find the

corresponding adjoint matrices A", B".

O Let’s calculate all the cofactors of matrix A4:

A, =(-1)"-4=4,  A4,=(-1)"-3=-3,

Ay=(-1)"2==2, A,=(-1)"1=1.

Now we can find the adjoint matrix by transposing matrix (4,):

. . (4 =3 (4 =2
A=) ={—2 1) (-3 1]'

Let's calculate the cofactors of matrix B:

al 4 6 2|5 .

BH:(—I)H -8 —9|=12’ Bu:(_l)l2 —6 ‘=87’Bl3:("1)13 3 _48|:—68,
N 3 w1 3 a1 2

le=(_1)21 -8 —9‘:_69322:(_1)22 7 —9‘:—30’323:(_1)23 7 —8|:22’
+ 23 + I 3 " 1 2

B31=(—1)31 4 6|:O°B32:(_1)32 5 6‘=9’B33=(_1)33 5 4‘=_

Then the adjoint matrix is found by transposing matrix (5;):

T

12 87 -68 12 -6 0
B*=(B) =|-6 -30 22| =8 -30 9 |.m
0 9 -6 68 22 -6

2.3.2. Determinant of Matrix Product
Let A and B be square matrices of the same order. Then
det(4-B)=det A-det B,

i.e. the determinant of a matrix product of square matrices equals to the product of

their determinants.
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Example 2.5. Calculate the determinant of the product of matrices:

1 2
el
O Let’s evaluate the second order determinants of the matrices (see example 2.1):
det 4 =-2, det B=-7. Using the property of the determinant of a matrix product, we
get det(4-B)=det4-detB=(-2)-(-7)=14.

Now, calculate the determinant by computing the matrix product:

ooy PG %)

9 13
Hence, det(A-B)z‘ 0 ‘=9-29—13-19=14. The result is equal to the

19

one obtained before. B
2.3.3. Elementary Transformations

Definition-based evaluation of determinants is not generally applied to the
large matrices (n>3), since the number of required operations, as well that the
difficulty of the calculation, grows very quickly.

It is a much more efficient approach to use the properties of the determinant.
The most important ones for evaluating determinants are Properties 3, 6, 9. These
properties are called elementary transformations (elementary row operations).

o Switching two rows (columns) of the determinant reverses its sign.

o Multiplying each element in a row (column) by a non-zero constant multiplies
the determinant by this constant.

° Adding to each element of a row (column) a scalar multiple of a corresponding
element of another row (column) of the determinant doesn’t change the value of
the determinant.

Elementary transformations can be used to simplify the determinant, or to

modify it so that it can be computed more easily.
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Method of matrix reduction to triangular form
The method consists of two steps:

1)using elementary transformations reduce the determinant of a matrix
to the triangular form;

2) calculate the determinant of a triangular matrix as a product of the diagonal
clements.

Example 2.6. Calculate the determinant

1 0 3 4

0 3 01
det A=

301 2

4 1 2 3

by transforming it to a triangular form.
O 1. Let’s use the elementary transformations to reduce the matrix to the triangular

form. Choosing element g, =1 from the first row as a leading coefficient (a pivot),

make all the other elements of the first column equal to zero. Add the first row times

(-3) to the third row and add the first row times (—4) to the fourth row:

1 0 3 4 1 0 3 4

0 3 0 1 0 3 O 1
det 4 = = )

301 2 0 0 -8 -10

4 1 2 3 0 1 -10 -13

The value of the determinant doesn’t change since we use the Ill-type
elementary transformations.

Switch the second and the fourth rows of the determinant:

10 3 4 10 3 4
03 0 1 0 1 -10 —-13
00 -8 -10| |0 0 -8 -10/|
01 -10 -13 03 0 1

We reverse the sign of the determinant because we used the I-type elementary

transformation.
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Now choose entry a,=1 as a leading coefficient and make element

a,, = 3equal to zero by adding the second row times (=3 ) to the fourth one:

S OO =

0
1
0
3

3
-10
-8
0

4

-13

-10
1

1 0
0 1
0 0
0 0

3
—-10
-8
30

4
-13

~10 |

40

Let’s divide the third row by (—8), and the fourth row by 10, at the same time

multiplying the determinant by —80 = (—8) .10 in order to keep the equation balanced

(II-type transformation):

1 0 3

0 1 -10
1o 0o -8

0 0 30

4

-13

-10
40

—(-80)-

oS OO =

0 3 4
1 -10 -13
0 1 125
0 3 4

=80-

S O O =

oS O = O

3 4
~10 -13
1 1,25
3 4

Let’s choose ay, =1 as a leading coefficient and make a,, =3 equal to zero.

Add the third row times (-3 ) to the fourth row:

80-

1 0
0 1
0 0
0 0

3
-10
1
3

4
~13
1,25

4

80-

oS O O =

Now we have an upper triangular matrix.

oS O = O

3
-10
1
0

4
-13
1,25 |
0,25

2. Evaluate the determinant of the upper triangular matrix by multiplying the

elements of the main diagonal:

det A=80-

o O O =

=80-1-1-1-0,25=20. 1

45



Method of determinant order reduction

The method consists of two steps:

1) use the Ill-type elementary transformations to make all the elements of
a row (column), except for one, equal to zero;

2) expand the determinant along this row (column), obtaining a determinant of
decreased order. If the order of the new determinant # >1, go to step 1, else finish the
calculations.

Example 2.7. Evaluate the determinant

0
3
det 4 =
0
1

N = O W

W N = s

1
0
3
4

by reducing its order.

O 1. Let’s choose a,, =1 as a leading coefficient, and make all the other elements of

the second row equal to zero, using elementary transformations. Multiply the fourth

column by (—3) and add it to the second one:

1 0 3 4| |1 12 3 4
030 1[]0 0 01
301 2| (3 =6 1 2|
412 3| |4 -8 23

2. Expand the determinant along the second row:

1 -12 3 4
0 o o1 1 -12 3
=1-(-1)"" {3 -6 1|
3 -6 1 2
4 -8 2
4 -8 2 3

We now have a third order determinant.

Now let's multiply the second column by 0,5, then we also have to multiply the

determinant by 2):
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1 -12 3 1 -6 3
3 -6 1]=2-[3 -3 1.
4 -8 2 4 -4 2

Add the first column to the second one:

1 -6 3 1 -5 3
213 =3 1|=2-{3 0 1]
4 -4 2 4 0 2

Expand this determinant along the second column:

b= 301 301
213 0 1]|=2-(=5)-(-1)"*- =10- .
(=5)-(-1) 4 2‘ 10‘4 2‘

4 0 2

We get the second order determinant.

Let’s add the first row times (—2) to the second row:

31 3 1
=10- :

10-
4 2 -2 0

Expand the determinant along the second row, getting the first order
determinant, which value equals to its only element:

3 (1):10-(—2)-(—1)2+1-1:20.

10-|

The result 1s equal to the one obtained in example 2.6. B

EXERCISES

Evaluate the determinants:

m m n
m+n m-—-n

a)

; bylm m m+n|.

m-n m+n
n m+n 2n
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CHAPTER 3. MATRIX RANK

3.1. LINEAR DEPENDENCE AND LINEAR INDEPENDENCE
OF MATRIX ROWS (COLUMNS)

In the following, we will call matrix-columns (matrix rows) simply columns
(rows) and denote them by lowercase letters. Columns are equal if they have the
same sizes and all the corresponding elements are equal.

Column A4 1s called a linear combination of columns 4, 4,,..., A, of the same

sizes, 1f
A=o- A4 +o, -4, +..+a, -4, (3.1)
where a,,0,,...,a, are arbitrary numbers. In that case we say that column A is
decomposed into columns A ,4,,...,4,, and numbers a,,0,,...,a, are called the

decomposition coefficients.

A linear combination 4=0-4+0-4,+..+0-4,, where all the coefficients

are equal to zero, is called trivial.

If the columns in (3.1) are given by

ank
then the matrix equality (3.1) can be expressed in a form of element-to-element
equalities

a, =0 d;+0, - d,+..+0, -d,, i=1,..n.

1

A linear combination of rows of the same sizes is defined in a similar way.

A set of columns 4,,4,,..., 4, of the same sizes 1s called a system of columns.

Any part of a system of columns system 1is called a subsystem.
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A system of k columns A4 ,4,,...,4, is called linearly dependent, if there

exist such numbers o ,x,,...,0, , not all equal to zero, that
o A +o, A+ +o, -4 =o0. (3.2)

Hereinafter symbol o will denote a zero column of a corresponding sizes.

A system of k columns 4 ,4,,....,4, is called linearly independent, if
equation (3.2) is correct only if o,=o,=..=a,=0, ie. when the linear
combination on the left side of equation (3.2) is trivial.

One column 4, composes a system as well: for 4, =0 the system is linearly
dependent, and for 4, # o — linearly independent.

For rows (row matrices) we get similar definitions.

Example 3.1. By definition, determine linear dependence or linear

independence of systems of columns:

e} oalihesl)

1 2
O a) Columns 4 ={OJ and A4, ={O] are linearly dependent, because we can

compose a non-trivial linear combination, e.g., with coefficients o, =2, a, =-1

2

which is equal to a zero column:

1 0
b) columns A4 :[O] and 4, ={2] are linearly independent, because the
, 1 0) (0 l-a, =0
equality o, -| |+0a,-| _ |=| .|, that matches the system , 1s correct only
0 2) \0 2-a,=0

when o, =0, =0.0
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Properties of linearly dependent and linearly independent columns

The concepts of linear dependence and linear independence are defined for
rows and columns in a similar manner. Hence, the properties of linear dependence
and independence, given for columns, will be true for rows as well.

1. If there is a zero column in a system of columns, this system is linearly
dependent.

2. If there are two equal columns in a system of columns, this system is linearly
dependent.

3. If there are two proportional columns (4, = A4, ) in a system of columns, this
system is linearly dependent.

4. A system of k>1 columns is linearly dependent when and only when at
least one of the columns is a linear combination of the others.

5. Any columns that are included in a linearly independent system, compose a
linearly independent subsystem.

6. A system of columns that contains a linearly dependent subsystem, is
linearly dependent.

7.1f a system of columns 4,,4,,...,4, is linearly independent, but after the
addition of column A4 becomes linearly dependent, then column A can be uniquely
decomposed into columns 4,,4,,...,4,, 1.e. decomposition coefficients are single-
valued.

8. Two nonzero columns 4, A4, compose a linearly dependent system, if they
are proportional (4, =24,), and a linearly independent system, if they are not

proportional.
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3.2. BASIS MINOR AND MATRIX RANK
Basis minor of a matrix. Computing the rank of a matrix

Let A be a mxn matrix, and & — a natural number not greater than m and n:

k<min{ m;n }. A minor of order k of matrix A4 is the determinant of a matrix

of the k-th order, composed of the eclements at the intersection of & arbitrarily
chosen rows and k arbitrarily chosen columns of 4.

Denoting minors, we will write the numbers of the chosen rows as superscripts
and the numbers of the chosen columns as subscripts, in ascending order.

Example 3.3. Write down minors of different orders of the following matrices:

{1 ) 3] :
a) A= ; b) B=|0
1

1 0
2 3.
4 5 6
3 3

= N

O a) Matrix 4 of sizes 2x3 has six minors of the first order, for example,

M, =det(a,)=2, and three minors of the second order, for example,

12 _
M3 =

2 3
5 6

b) Matrix B of sizes 3x4 has 12 minors of the first order, e.g.

2 1
M) =det(b,,)=4, and 18 minors of the second order, e.g. My = 5y =2, and
1 10
four minors of the third order, e.g. M5 =[0 2 3[=0.1
1 3 3

Let 4 be a mxn matrix. A minor of A of order r is called basis, if it is
nonzero and all minors of order (r + 1) are equal to zero or do not exist.

The rank of a matrix is the order of its basis minor. The rank of a matrix 4 is
denoted by rg 4. It can also be denoted by Rg 4, rang 4, rank 4.

A zero matrix doesn’t have a basis minor. Thus, the rank of a zero matrix is, by

definition, equal to zero.
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If all minors of order £ of a matrix are equal to zero, all minors of higher
order are also equal to zero.

The rank of a matrix equals to the largest order of any nonzero minor of this
matrix.

If a square matrix is nonsingular, its rank is equal to its order. If a square
matrix is singular, its rank is less than its order.

The rank of a block matrix is computed as the rank of an ordinary (numerical)
matrix, 1.e. without paying attention to the block structure. In addition, the rank of
a block matrix is not less than the ranks of its blocks:

rg(A4 | B)zrg A and rg(4|B)=1gB.

Example 3.4. Find all basis minors and ranks of the following matrices:

a)0=[g g], b)A=(O 0 1); ¢) B= 1 2];

0 0

1 2 2 3

d)c123 YyD=|0 0 HF=[2 4 5

= ey b= : = :

2 4 6) ’ ’

1 3 1 2 3
I 2 3 1 2 2 0
9)G=l0 4 5|, hH=0 2 2 3
0 0 6 0 0 0 O

O a) Matrix O is zero, so all of its minors are equal to zero. A zero matrix doesn’t

have any basis minors, and it’s rank equals to zero by the definition: rgO=0.
b) One of the first-order minors of matrix A=(0 0 1) is nonzero: M; =1,

and minors of the second order don’t exist (since there’s only one row). Hence, the

minor M is basis and the rank of this matrix is equal to 1.
c¢) For matrix B = [O O] there are nonzero minors of the first order: M| =1

and M, =2. These minors are basis, because the only minor of the second
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1
order M|} = | 0 is equal to zero. Hence, rg B=1.

1 2 3
d) All first-order minors minors of the first order of matrix C = [ 5 4 6]’

which are equal to its elements, are nonzero, and all the minors of the second order
are equal to zero, because rows of the matrix are proportional. Thus, the matrix has

six basis minors and its rank is equal to 1.

e) Matrix D has a nonzero minor of the second order M|} =

2
{=1, and
3

minors of the third order don’t exist (since there’re only two columns). Hence, M,; —
is the only basis minor and rg D =2.
f) Matrix /' has six nonzero minors of the second order: M.}, M7, M},

MZ, M2, M2, and the only third-order minor, i.e. the determinant, is equal to zero,

since matrix has two equal rows (the first and the third ones). Hence, each of the
mentioned minors of the second order is basis and the rank of the matrix is equal to 2.
g) The determinant of matrix GG (i.e. the minor of the third order) is nonzero:
detG=M,; =1-4-6 %0 . Hence, the minor M,>, is basis and rgG =3.
h) All third-order minors of this matrix are equal to zero, because the third row
of these minors is zero. So, only a minor of the second order, situated in the first two

rows of the matrix, can be basis. Searching through the six possible minors, we

choose the nonzero ones:

0

12

1 2
, and M, =

]\/[11;:]\/[1132= 0 2

1 0
0 3|

Each of these five minors is basis. Hence, the rank of this matrix is equal to 2. B
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Properties of basis minor and matrix rank

1. In an nonzero matrix A every row (column) is a linear combination of
rows (columns), in which the basis minor is situated.

2. The determinant is equal to zero if and only if one of its rows (columns) is
a linear combination of other rows (columns).

3. Applying elementary transformations to a matrix does not change its rank.

4. If a row (column) of a matrix is a linear combination of other rows
(columns) of this matrix, this row (column) can be deleted from the matrix without
changing its rank.

5. If amatrix is reduced to the simplest form (1.3), then rg A=rgA=r.

6. The rank of a matrix is equal to the maximum number of linearly
independent rows of this matrix.

7. The maximum number of linearly independent rows of a matrix is equal to

the maximum number of linearly independent columns:
rgAd=1g A"

8. Elementary row transformations preserve linear dependence (or linear
independence) of any system of columns of this matrix.

9. The rank of a matrix product is not larger than the ranks of factors:
1g(AB)<min{rg A,rg B }.

10.If 4 is a nonsingular square matrix, then rg(A4B)=rgB and
rg (CA) =r1g C, 1.e. the rank of a matrix does not change after multiplying it from the
left or from the right by nonsingular square matrix.

11. The rank of a sum of matrices is not larger than the sum of the ranks of
summands:

rg(A+B)<rg A+1gB.
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3.3. METHODS FOR MATRIX RANK COMPUTATION

3.3.1. Method of Bounding Minors

Let A be an mxn matrix. We will say that minor M2k ~of order (k +1)

bounds (contains) minor M **"% of order k.

Describing the method, we will write down indices of the chosen rows and
columns, in which the minor is situated, without putting them in ascending order. In
so doing, the minor at issue and the minor with indices put in order have equal
absolute value and, maybe, are of different signs, but it is of no importance for the
method of bounding minors, because we only want to find out the answer to the

question: 1s the minor equal to zero or not.

1. Choose row i and column j,, so that the minor of the first order M =a,
is nonzero. If it is possible, then rg A>1, else the process terminates and rg 4 =0.
2. Bound the minor A/ #0 by adding another row i, # i, and another column

J,#j, to the chosen i-th row and the j-th column, so that the minor

o a. .
B ha hja

JiJa

#0. If it is possible, then rg 4>2, else the process should

i aizjz
terminates and rg A=1.

3. Bound the minor A" #0 by adding to the previously chosen rows and

columns another row i, and another column j; in order to get the minor M #0.

If it is possible, rg A >3 else the process terminates and rg A=2.

Continue the bounding process until it is terminated. Suppose we have found

a nonzero minor of order r: M #0,ie. rg A>r. But all the minors of order

(r+1), bounding it, are equal to zero M~ =0 or do not exist (for r=m or

r=n). Then the process terminates and 1g A=r.
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Example 3.5. Find ranks of matrices, using the method of bounding minors:

10213
0 0 39 02 3
0= . A= . B= . C=l2 011 2|
0 0 2 4 2 4 6

30325

O Matrix O:
1. This matrix does not have any nonzero minors of the first order, because all

of its elements are equal to zero. Hence, rg O =0.

Matrix A:
1. Choose the first row (i, =1) and the first column ( j, =1) of matrix A4, at the

intersection of which there is a nonzero element a,=3%#0. We have minor

M| =3%0.Hence, 1g A>1.

2. Add another row i, =2 and another column j, =2 to the previously chosen

ones. We have a nonzero minor of the second order: M,; =det A=

9
‘=—6¢0.
4

Hence, rg A>2.

3. Since we have used all the rows and columns of matrix A, there are no
minors bounding M|? # 0. Hence, rg 4=2.
Matrix B :

1. Choose the first row and the second column of matrix at the intersection of
which there is a nonzero element b, =2 0. We have a minor M} =23 0. Hence,
rg B>1.

2. Add the second row and the third column to the previously chosen ones. We

have a minor of the second order: M, = =0. The choice was unsuccessful,

because we have got a zero minor. Let’s take the first column instead of the third one.

2
Then we have a nonzero minor of the second order: M)} =

0
2|=4;tO. Hence,

rgB>2.
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3. We have used all the rows of matrix B. There are no minors of the third
order, thus rg B=2.

Matrix C:
1. Choose the first row (i, =1) and the first column ( j, =1) of matrix C, at the

intersection of which there is a nonzero element a,=1%0. We have minor

M| =1=0.Hence, rgC >1.

2. Add another row i, =2 and another column j, =2 to the previously chosen

ones. We have a minor of the second order: Mllz2 =

0
0 ‘ Choosing the second

column was unsuccessful, because we have got a zero minor. Let’s choose the third

1 2
column (j,=3) instead. Then we have a nonzero minor M, =‘ 5 1 =-3=0.
Hence, rgC >2.
3. Bound minor M,} #0. There are three bounding minors:
1 21 1 2 3 1 20
ME=12 1 1[=0, MZ=[2 1 2|=0, M2=[2 1 0[=0
3 32 3 35 330

All three determinants are equal to zero, since the third row is a sum of the first
two. Thus, it’s impossible to find a nonzero minor of the third order, i.e. the rank of

matrix C isequalto 2. B

3.3.2. Elementary Transformations Method

Let A be an mxn matrix. To calculate its rank we need to make the following
steps.

1. Reduce the matrix to echelon form (see the method in section 1.2.6).

2. Calculate the number rof nonzero rows of the obtained matrix. This

number is equal to the rank of matrix 4.
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This method is based on Property 8 (see section 3.2). The basis minor of a

matrix in echelon form (1.1) 1s a minor

0 1 *
M = : )
0 0 1

composed of columns containing unity elements (at the beginning of each “step™).
This determinant of triangular form 1s nonzero (equals to 1), and each of its bounding

minors (if 1t exists) is equal to zero, because it contains a zero row.

Example 3.6. Find ranks of matrices, using elementary transformations method

0 0 3 9 0 2 3
0= 5 A= 5 B= >
(O O] (2 4] [2 4 6]

I 2 3

I 021 3 0 0 O
C=|2 01 1 2|, D=2 1 3|

30 3 25 I 1 2

3 25

O Matrix O
1. A zero matrix is already in echelon form (see definition in section 1.2.6).

2. A number of nonzero rows is equal to zero. Hence, rg O =0.

Matrix A:
1. Reduce matrix A4 to echelon form (see example 1.18):

13
A~ .
01]

2. There are two nonzero rows in this matrix. Hence, rg 4=2 .

Matrix B:

1. Reduce matrix B to echelon form (see example 1.18):
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B~[I1—2 3].

0 [1 15

2. There are two nonzero rows in this matrix. Hence, rg B=2 .

Matrix C:

1. Reduce matrix C to echelon form. Choose a,, =1 as a pivot and make all
the other elements of the first column equal to zero: add the first row, multiplied by

(-2), to the second row, and the first row, multiplied by (-3), to the third one. We

get matrix

that has two equal rows. By Property 4 (see section 3.2), we delete one of the equal

1 0 2 1 3
TOWS: . We got an echelon form of the matrix.
0 0 -3 -1 4
2. There are two nonzero rows in this matrix. Hence, rg C =2,

Matrix D :
1. Reduce matrix D to echelon form. We delete the zero row and choose

a,, =1 as a pivot element to make all other elements of the first column equal to zero:

1 2 3 I 2 3

2 1 3 0 -3 -3
D~ ~ :

I 1 2 0 -1 -1

3 25 0 -4 -4

The last three rows of the matrix are proportional. By Property 4 (see section 3.2) we

2 3

1
can delete two of them:
0 -1 -1

j. We have got an echelon form of the matrix.

2. There are two nonzero rows in this matrix. Hence, rg D=2

Note, that rg C =1g D, because D =C" by Property 7 (see section 3.2). B
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EXERCISES

1. Calculate ranks of the matrices:

1 2 1 2
1 m n m
n m n
a) |2 1 1 n |, b)
-m n -m n
3 m+1 n+l m+n
1 2 1 2

using the method of bounding minors and elementary transformations method.

2. Calculate ranks of the matrices:

0 0 O
0 0 I -1 1 0O 0 1
a) A= :b) A= ;¢) A= ;d) A= ;) A=|0 1 01
0 0 2 =2 0 1 0 0
1 00
I 11 12 3 4 10 0 0 5
) A={2 2 3|, g A4={24 6 8 |;h)4={00 0 0 O
3 3 4 36 9 12 20 0 011

3. Calculate ranks of the matrices using the elementary transformations

method:
0 2 -4
25 31 17 43
1 2 3 4 -1 -4 5
75 94 53 132
a) A=|1 2 5 61|, b)A= ; c)AdA=|3 1 7
75 94 54 134
3 6 13 16 0 5 -10
25 32 20 48
2 3 0
1 0 4 -1 24 19 36 72 38
2 1 11 2 49 40 73 147 -80
d) A= ; e) A= :
11 4 56 5 73 59 98 219 -118
2 -1 5 -6 47 36 71 141 =72

4. Calculate ranks of the matrices using the method of bounding minors:

1 0 20
1 2 3 4
4 I 2
a) A=|1 2 5 6]|; b)Ad= :
6 3 5 2
3 6 13 16
5 3 32
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CHAPTER 4. INVERSE MATRIX

4.1. DEFINITION, EXISTENCE AND UNIQUENESS OF INVERSE
MATRIX

Let’s consider a problem of definition of an operation, opposite to the
multiplication of matrices.

Let A be a square matrix of order n. Matrix A, satisfying with the given
matrix A to the equalities

A A=A4-A"=E,

is called the inverse of 4. Matrix A is called invertible, if there exists an inverse
matrix, otherwise it is called noninvertible. By definition 4 and A™' are permutation
matrices.

From the definition it follows that if an inverse matrix A~ exists, it is a square

matrix of the same order as 4.

dy v 4y,
A square matrix A=| : . i | with nonzero determinant has an inverse
anl e ann
matrix, which is unique:
All A21 eee Anl
1 A, A4, ... 1
PRI Bl @)
detd | : : DU det A
Aln A2n 0 Ann
All A21 Anl
+ 12 A22 An2 . .
where A" =| | ; is a transpose of a matrix composed of cofactors
A4, 4, ... A4,
of matrix A.

Matrix A" is called the adjoint matrix of A (see section.2.3.1).

61



The operation of matrix inversion allows us to define an integer negative

power of a matrix. For a nonsingular matrix 4 and any natural number n we have

n

A7 =(4")".
4.2. PROPERTIES OF INVERSE MATRIX
The operation of matrix inversion has the following properties:
L (41) =4,
2.(4-B) =B"-47,
3.(47) " =(47),

1
det 4

5.E'=E,

4. detA™' =

>

if the operations in equalities 1 — 4 have sense.
A matrix that is inverse to a nonsingular diagonal matrix is also diagonal:

| diag(ay, ay.....a,,)] s diag(L’ L,’L] .

a, dy a,,

4.3. METHODS OF MATRIX INVERSION
Let A be a square matrix. We need to find the inverse matrix 4.
Algorithm for finding the inverse of a matrix using the adjoint matrix
(first method)
1. Evaluate the determinant det A of the given matrix. If det A =0, the inverse

matrix does not exist (matrix A is singular).

2. Calculate matrix (4,) of cofactors 4, = (1) M , of matrix 4.
3. Transposing matrix (4, ), obtain the adjoint matrix 4" =(4,) T

4. Compose the inverse matrix (4.1), by dividing all the elements of the adjoint
matrix by the determinant det 4 :
A= L ‘A"
det A
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Algorithm for finding the inverse of a matrix using elementary transformations
(second method)
1. Compose a block matrix (A | £ ) , by adding an identity matrix of the same
order to the right of 4.

2. Using elementary row transformations of matrix (A | E ), reduce its left
block to the simplest form A (1.3). In doing so, the block matrix takes on form
(A | S), where S is a square matrix, obtained from an identity matrix £ by applying

the elementary transformations.

3.1f A=F, then block S is the inverse matrix, i.e. S=A". If A= E, then
matrix 4 is noninvertible.
For a nonsingular matrix A4 this method of finding the inverse matrix is

illustrated by the following scheme:
( A | E) Elementary row transformations N ( E | A—l)

: : b :
For nonsingular square matrices of the second order Az[ d] there is a

c

simple rule for finding an inverse matrix, which follows from the first method:
1) switch the elements on the main diagonal;
2) change the signs of elements on the secondary diagonal;

3) divide the obtained matrix by the determinant det A =ad —bc #0:
-1 1 d ~b
A7 = : (4.2)
ad—bc\—c a

1 2
Example 4.1. Given A= [1 4] , find the inverse matrix.

O First method.

1
1. Find the determinant detAz‘1 4‘=2¢O. Since the determinant 1is

nonzero, matrix A is nonsingular and, therefore, has an inverse matrix.
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4 -1
2. Compose a matrix of cofactors: (4,) =[ 5 1 ]

3. Transposing the matrix (4,), we get the adjoint matrix

A =(4) = 4 =2
SO = B B
4. Dividing all the elements of the adjoint matrix by the determinant det 4 =2,
e 1 4 =2 _ 2 -1
2 (-1 1 -+ '
., 2 -1\(1 2 1 0
Let’scheck A~ A= = = =F
-+ 1)U 4 0 1

: , I 2 a b
Using the rule (4.2), for matrix 4 = = we get

find the inverse matrix:

2=

1 4 c d
= 1 (d —b]_1(4 —2]_[2 —1]
detA\-¢ a ) 2\-1 1 -1 1)
Note that det 4™ = 1__1 .
2 detd

Second method.

1. Compose a block matrix

wia-(; 3o 1)

2. Applying elementary row transformations, reduce it to the simplest form

(E | A'l) . Add the first row, multiplied by (—1), to the second row:

5 1 211 0) (1 2]1 0
(l)'1401 0 2(-1 1)

Now add the second row, multiplied by (—1), to the first one:
1 211 O 1 012 -1
0 21-11 0 2(-1 1)
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To obtain an identity matrix in the left block we need to divide the second row by 2:
I 02 -1 1 012 -1
0 2|-1 1 0 1|-+ 1)

[ —
: : . 2 -1
In the right block we have the inverse matrix 4~ =) | H
2 2

E,

Example 4.2. Given 4= , find the inverse matrix.

o O =
o = N
o O =

O First method.
1. Find the determinant det A =2 .

2. Find the cofactors of matrix A4:

4|1 0 2 00 5|0 1
A“:(_l)ll.z ) =2; Alzz(_l)lz'o 2‘: > A13:(_ )13'0 2‘: >
a2 1 2|11 s |1 2
a2 1 2|11 O B
A31:(_1)31' 1 O‘:_l; A32:(_1)32' 0 0 =0; A33:(_1)33' 0 1‘:
2 0 0
and compose matrix (Ay.)z -2 2 2.
-1 0 1

3. Transposing the  matrix (A ), get the adjoint matrix

2 2 -]
A=(4) =0 2 0
0 -2 1

4. Dividing all the elements of the adjoint matrix by the determinant det 4 =2,
we get the inverse matrix:

1 -1 -4
1
Al = A'={0 1 0
det A
0 -1 1
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1 -1 =1\ (1 2 1) (1 0 0
Let’s check the equality 47'4=F: |0 1 0 |-{/0 1 0|=[0 1 0.
0 -1 +)lo22) o o1

Second method.

1. Compose a block matrix(A | E ) by writing to the right of A4 an identity

matrix of the same order:
1 2 11 0 O
(A | E )= 01 0(0 1 0].
0 2 210 0 1

2. Applying elementary row transformations, reduce it to the form (E | A'l) ;

1 21 0 0 1 0 1|1 -2 0
0 1 0 1 0(~[0 1 0|0 1 Of~
0 2 2 0 1 0 0 2(0 =21
1 0 1]1 -2 0 1 0 0f1 -1 -4
~l0 1 010 1 O0f~ [O 1 00 1 O
0 0 1{0 -1 & 0 0 110 -1 1
N
Ey
1 -1 -1
In the right block we have the inverse matrix A" =[{0 1 0 |. ®
0o -1 1+

4.4. MATRIX EQUATIONS
Consider a matrix equation
A-X =8B, (4.3)
where A and B are given matrices with the same number of rows (and matrix 4 is
a square matrix). It is required to find matrix X that satisfies the equation (4.3).

If the determinant of matrix A4 is nonzero, then matrix equation (4.3) has
a unique solution

X=A4A"-B.
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Let’s also consider the following matrix equation
Y-A=B8B, (4.4)

where 4 and B are given matrices with the same number of columns (and matrix A4
is a square matrix). It is required to find matrix Y that satisfies the equation (4.4).
If the determinant of matrix 4 is nonzero, then equation (4.4) has a unique

solution

Y=B-A".

Example 4.3. Given the matrices

1 2
1 2 1 35
A= , B= , C=|3 4],
1 4 2 46
5 6
solve equations: a) A-X=B; b)Y-A=B; ¢)V-4=C.
: A | :
O The inverse matrix 4~ =| | was found in example 4.1.
27 2

a) The solution of equation 4- X = B is obtained by the multiplication of both
parts of the equation by 4" from the left:

L 2 -1\ (1 3 5) (0 2 4
X:A -B: _i l -2 4 6=l i.
2 2 2 2

b) The equation has no solutions, because matrices 4 and B have different

[\

[NY

number of columns (2 = 3).
¢) The solution of equation Y4 =C is obtained by the multiplication of both
parts of the equation by A~ from the right:

1
Y=CA"=|3
5
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Example 4.4. Solve the equation 4- X - B=C, for
1 2

A= , B
1 4

2 -1
O Inverse matrices A‘lz( 1 1] and B'=l0 1 0 | were found in
2 2

I
o O =

Examples 4.1 and 4.2, respectively.

Find the solution of the matrix equation by the formula

1 -

1 -
Lo (2 -1y (1 35
X=4".C-B'= : 10 1 0 |=
-+ 1) 24 6)|

v =

][

Il
N\
- O
= DN
OS] SN
N—

()

[

()

=

Il
N\
R~ O
| [
o= N
(e O
N—

EXERCISES

1. Find inverse matrices for the given ones:

m n -m m
a) (_m Z];b) -n 1 1 |;¢)]|0

m
m -1 1 0

Iy —_
W N

o
3
+
S

2. Solve matrix equations:

[m n] [1 2] [m n] [1 2]
a) ‘X = -2-X; b) X - = -2-X;
-m n 3 4 -m n 3 4

1 0 1 1 1 1
1 1 m n 1 2
C) X - = ;o D0 1T m|iX=\m m m|.
-m n -n m 3 4
1 -n 1 n n n
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CHAPTER 5. SYSTEMS OF LINEAR ALGEBRAIC
EQUATIONS

5.1. BASIC CONCEPTS AND DEFINITIONS

System of m linear algebraic equations with n unknowns is represented by
the following formula

ay X, + apXx, +++a,x, =b,

1n"*n

< AyX, +apX, ++a,x =b,,

2n"n

(5.1)

a, x,+a x,+-+a x =b

Numbers a,, i=1,...,m, j=1,...,n are called coefficients of the system,

b,,b,,...,b — constant terms; x,,x,,...,x, — unknowns. The number of equations m

can be less, more or equal to the number of unknowns # .

System solution is an ordered set of n numbers (o,c,....,a, ) such that, if we
substitute unknowns x,,x,,...,x, with corresponding numbers «,,,,...,o,, then

each equation of the system will be correct.

System is called consistent, if it has at least one solution. If a system has no
solutions, it is called inconsistent.

Consistent system is called determined, if it has a unique solution, otherwise, if
there 1s more than one solution, then system is called underdetermined.

System (5.1) is called homogeneous, if all constant terms are equal to zero:
X, + A X, + e+ ayx, =0,

Ay X, + 0%, +-+a, x, =0,
J 21711 22°%2 2n"¥n (52)

ax+a x,+--+a x =0.

Systems of general form (5.1) are called nonhomogeneous.

System (5.1) is usually written in matrix form. To do this, it is necessary to
a, - 4y

write the coefficients of the system as a coefficient matrix A=| @ . : |,



constant terms are written as a constant term column b=| : |, and unknowns — as

an unknown column x =

X

Matrix form of an nonhomogeneous system of equations (5.1) 1s given by
Ax=b, (5.3)
and of a homogeneous system of equations (5.2):
Ax=o0 (5.4)

>

where symbol o on the right hand side denotes zero column of sizes m x1.

Matrix form (5.3) of a system of equations can be represented equivalently as

the following:
all alZ aln bl
X, + Xy+ ..+ X, =| :
aml amZ amn bm
(xl
Then the system solution is represented by a column x=| : | and satisfies the
(xl’l
equation
all a12 aln bl
R o A I R o A o I R ] B (5.5)
aml amZ amn bm

1.e. a constant term column is a linear combination of columns of a coefficient matrix.
5.2. CRAMER’S RULE

Consider the following case: the number of equations m 1s equal to the number
of unknowns n (m =n), i.e. we have the following system

a,x, ++a,x =b,

(5.6)

ax,+-+a,x =b,
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where coefficient matrix 1is a square matrix of the #n-th order:

a, 4Gy - 4
a a coe a
21 Yy . .
A=| : - s Its determinant will be denoted by
anl an2 ann
a, 4y \n
A=det A= y Ay = Oy,
anl an2 e ann

Cramer’s rule. If the determinant A of the coefficient matrix of a system with
n linear equations and n unknowns is nonzero, then the system has a unique

solution, which is obtained by the following formulas

where A, is the determinant of a matrix, obtained by the substitution of the i-th

ay oA, boay, g,

A, v Ay, b, a,., - a

. . 21 2i-1 2 2i+l1 2
column with the constant term column, i.e. A, = 0T !
anl anz’—l bn an TS ann

If A=0 and at least one A, =0, then the given system is inconsistent.
If A=A =..=A =0, two cases are possible: the given system can be both

inconsistent or underdetermined.
Example 5.1. Solve the system of linear equations

2%+ 2%, +x,=9,

X + X, =3,
2%, +x;=T7.
2 21
O Let’s compose the coefficient matrix 4= 1 1 0 | and calculate its determinant
0 21
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=2+2-2=2 (example 2.1). As the determinant is nonzero, the

>

I
O = N
N o= N
—_— O

system has a unique solution (by Cramer’s rule).

Find determinants A, and unknowns x, (i=1,2,3):

9 2 1
A=[3 1 0[=9+6-7-6=2, xl=%=l;
7 21
2
A,=[1 3 0[=6+7-9=4, x2=%=2;
0
2 2
A=|1 1 3|=14+18-12-14=6, x3=g=3. m
0 2

5.3. SYSTEM OF LINEAR EQUATIONS CONSISTENCY CONDITION

Consider system (5.3) of m linear equations with » unknowns. Compose
a block matrix by the addition of the constant term column to the right of matrix 4.

We obtain an augmented coefficient matrix:

a;, a,| b
a a, | b

(4]16)=| 7 UL (5.7)
D =" Q| O mx(n+1)

This matrix contains the whole information about the system of equations

except for the unknowns denotation.
Kronecker—Capelli theorem. System Ax=0b is consistent if and only if the

rank of the coefficient matrix is equal to the rank of the augmented coefficient

matrix: 1g A=1g (A4 | b).
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Example 5.2. Has the system
X +2x+x,=1,
2x,+x,+x,=0,
3x,4+x,+2x,+2x,=2
any solutions?

O Let’s compose coefficient and augmented coefficient matrices:

10 21 10 2 1|1
A=[2 1 0 1|, (4]b)=[2 1 0 1[0].
31 2 2 31 2 2|2

The rank of matrix A is equal to 2, because it has nonzero minors of the
second order and its third row equals to the sum of the first and the second rows.
Therefore, the third row can be excluded by the Property 4 (section 3.2), and the rank
will remain the same.

The rank of the augmented matrix is equal to 3, because it has nonzero minor
of the third order, e.g. the minor, composed from the first, second and the last

columns of the augmented matrix:

1
M5 =2
3

e N )

1
01=2+2-3=1%0.
2

Hence, rg A# rg(A | b) and the system is inconsistent (has no solutions). B

5.4. GAUSS-JORDAN ALGORITHM FOR LINEAR EQUATIONS
SYSTEM SOLUTION

Consider system (5.1) of m linear equations with » unknowns. To obtain
solutions it is necessary to make the following steps:

1. Compose an augmented coefficient matrix (5.7):

b

n 1

a, - 4

(418)=

ml mn m
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2. By the elementary row transformations of matrix(A | b) , reduce the matrix

to echelon form (section 1.2.6). If the basis minor of matrix A is situated in the first

r rows and 7 columns, we will obtain the following form:

1 a, - a, - a, ?1
0 1 - @ - alb,
(1& | [;): O O e 1 °cc ~rn Er . (58)
0 0 0|5 1
0 0 0 0o

3. Check the system’s consistency. To do this it is necessary to find ranks of
matrices 4 and(4 | b):

rg A=rg 4 =r —number of nonzero rows in matrix 4;

<o | rHLAf b, #0,
rg(4 | b)=rg(4 | b)={ ‘

r,if b, =0.

If rgA#rg(A|b) and b, =0, then the system has no solutions. The

algorithm should be terminated.
If rg A=rg(A4 |b) and b, =0, then the system is consistent. The process

should continue.

4. If the system is consistent (1g A=rg(A4 | b)=r), matrix (,ZI | 5 ) should be
reduced to echelon form (section 1.2.6). Using the elementary row transformations
the matrix should be reduced to the form, in which each column (which is a part of

the basis minor) has all elements equal to zero except for one (which is equal to 1). If

the basis minor of matrix A is situated in the first » rows and first » columns, the

matrix can be reduced to the following simplified form:
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10« 0 a,, - a,b
0 1 0 dyy oyl b
(4 |b)=|0 0 - 1 a,, - dl|b| (5.9)
0 0 0o
00«0 0 -« 0|0

Previous four steps are called the forward pass of Gauss—Jordan algorithm. As the
result of the forward pass the initial system substantially simplifies to the form
Ax=b":

' !
‘xl + al r+1'xr+1 +..+ al nxn b

(5.10)

!
+..+ad x =b.

7

'
‘xr + ar r+l‘xr+1

5. By the simplified form (5.9) we divide all unknowns x;,x,,...,x, into two

groups: basis and free. Unknowns, which correspond to the columns, that form basis
minor, are called basis variables, other unknowns — free variables.

For the system (5.10) basis variables are x,,x,,...,x,, free variables are

X..15%,.,,---»X, . Denominate basis variables (5.10) by free ones:
! !’
X = b al r1Xral T T ay Xy 5
(5.11)
! !
x _b rr+l r+1_"'_arnxn'

If matrix rank » equals to the number of unknowns n (r=1g A=n), then the

left block of matrix (5.9) will be an identity matrix £ :

1 0 - 0|f
=" 0%
0 0 - 1|8

All unknowns x,,x,,...,x, will be basis and formula (5.11) will define the

unique solution of the system:
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(x, =5,

=}
1F2 7% (5.12)
x,=b.

If matrix rank is less than the number of unknowns (rg 4 <n ), then the system

will have an infinite number of solutions, defined by formula (5.11), which will have

the following properties:

e for any values of free variables x_,, x .,X, by the formula (5.11) we will

rHl > N2

obtain such values of basis variables, that the ordered set of numbers x,,x,,...,x, will
be the solution of the system (5.1);
e any solution x,x,,...,x_ of system (5.1) will satisfy equalities (5.11).

Equalities (5.11), which denominate the basis variables by the free ones, are
called the general solution of the system (5.1).

The solution, obtained by formula (5.11) with the exact values of free
variables, 1s called the particular solution of the system (5.1).

The process of the solution of a consistent system (5.1) is terminated with
obtaining the formula (5.11) of a general solution (in particular, the process is
terminated with the definition of the exact solution (5.12)).

Step 5 is called the backward pass of Gauss—Jordan algorithm.

Example 5.3. Solve the systems of equations

(X, +2x, - 2x, =1, X, +2x, = 2x, =1,
a)<x1+3x2—3x3=1, b)<xl+3x2—3x3=1,
3x,+x,-2x,=1, 3% +x,-2x, =1,
2x, —x, +x,=3; 2%, —x,+x,=2;

X +x,+2x,+x,=1,

X +x,+2x,=4
c{l 2o d) 42x,+3x,+x,=0,

X +2x,+3x, =5, 3 _
X +4x,+2x, +2x,=1.
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1 2 =211
. . 1 3 -3]1

O a) 1. Compose the augmented coefficient matrix: (4 | b)= 3 1 1l
2 -1 1 {3

2. By the elementary transformations of rows of matrix (A4 | ), we reduce it to
echelon form. We choosea,, =1#0 as a pivot element. We add the first row
multiplied by (—1) to the second row, the first row multiplied by (=3) — to the third

row, the first row multiplied by (—2) — to the fourth row:

I 2 =211 1 2 -2
(A|b)= I 3 3]1 N 0O 1 -110

31 21(1 0 -5 4 |2

2 -1 1|3 0 -5 5|1

The pivot element is a,, =1 0. We add the second row multiplied by 5 to the third

and to the fourth rows:

I 2 211 1 2 211
(A | 5)~ 0 1 -1160 N 01 -1(2
0 -5 4|2 0 0 -1(-2
0 -5 5|1 0 0 011

The augmented matrix is reduced to echelon form.

3. We calculate the ranks of matrices: rg A=3, 1g(A4|b)=4. By the

Kronecker—Capelli theorem the system is inconsistent. The last equation of the
system has the following form: 0=1 (incorrect equality). Thus, the system has no

solutions.

X +2x,—2x, =1

2

X, +3x,-3x;, =1,
b) <
3x,+x,—-2x, =1

>

2%, = x,+x,=2.
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I 2 =211
: : I 3 -3]1

1. Compose the augmented coefficient matrix: (4 | b) = s 1 o1l
2 -1 112

The only difference from system "a" is the element b, =2.

2. Reduce the augmented matrix to the echelon form by the repetition of the

same steps from example "a":

I 2 =271 I 2 2|1
(A|b)=1 3 3 INO I -1 O~
31 2|1 0 5 4|2
2 -1 1|2 0 5 5160
I 2 =21 I 2 2|1
NO I -1{0 NO I -1 O=(121|b~)
0 0 -1(-2 0 0 2
0 0 0[O 0 0 0]0

3. Calculate the ranks of matrices: r=rg A=r1g(4 | »)=3. By the Kronecker—

Capelli theorem the system is consistent.

4. Reduce the matrix to simplified form. As the basis minor we choose M,; .

We add the second row multiplied by (-2) to the first row, and then we add the third

row to the second row:

1 2 2|1y (1 0 01} (1 0 0f1
oy |01 =1|0] [0 1 —1]{0| |0 1 0]2
(4]5)= ~ ~ =(4'|¥).
00 12|00 21 [0 0 1|2
00 0o/ (oo oo 0o0o0]o0

5. The matrix rank » equals to the number of unknowns n (=3 =n). Thus,

the system has a unique solution (all unknowns x;,x,,x, will be basis and there will

be no free variables). From the simplified matrix (A' | b’) we obtain the unique

solution: x, =1; x, =2; x, =2, which is represented by the column x=(1 2 2)".
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. {xl+x2+2x3=4,
X +2x,+3x,=5.

: : 1 1 2|4
1. Compose the augmented coefficient matrix: (4 | b)=[1 5 3 | 5].
2. By the elementary transformations of rows of matrix (4 | 5), we reduce it to
the echelon form. We choose a,,=1%0 as a pivot element. We add the first row

multiplied by (—1) to the second row:

1 1 2|4 11 2[4 “ o~
(4]b)= ~ =(45).
1 2 3|5 01 1]1
The augmented coefficient matrix is now in echelon form.

3. Calculate the ranks of matrices: 1g A=rg(A4 | b)=2. By the Kronecker-

Capelli theorem the system is consistent.

4. Reduce the matrix to simplified form. We choose M|} as the basis minor

and add the second row multiplied by (—1) to the first row:

oo (11 204) (10 1|3) . .
(Alb)z{o 1 1‘1]~{0 1 1‘1]=(A|b)

5. Variables x,, x, are basis and x; is free. We write the general solution

{x1=3—x3,
x,=1-x;.

The system has an infinite number of solutions. Let’s find a particular solution, e.g.

accordingly to the formula (5.11):

for x,=0 we get x,=3, x,=1. Thus, the column x=(3 1 O)T is particular
solution of the system.
X +x,+2x+x,=1,
d) {2x+3x,+x,=0,
3%, +4x, +2x,+2x, =1,
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S

2
0
2

O —
T

1
1. Compose the augmented coefficient matrix: (A | b) =|2
3

2. By the elementary transformations of rows of matrix (A | b) , we reduce it to
the echelon form. We choose a,,=1#0 as a pivot element. We add the first row
multiplied by (-2) to the second row, and the first row multiplied by (-3) to the

third row:

The pivot element a,, =1+ 0. We add the second row multiplied by (—1) to the third

row:

11 2 1]1 1 1 2 111
(4]6)~|0 1 -4 -1|-2|~|0 1 -4 -1|-2|=(4]5).
01 -4 -1|1-2 0 0 0 0]0
The augmented matrix is now in echelon form.
3. Calculate the ranks of matrices: 1g A=rg(4 | b)=2. By the Kronecker—

Capelli theorem the system is consistent.

4. Now the matrix should be reduced to simplified form. We choose M,; as

the basis minor. We add the second row multiplied by (—1) to the first row:

11 2 1]1) (10 6 2|3
(4]8)=0 1 -4 —1{=2]~[0 1 —4 —1|=2|=(4|0).
00 0 0[0) (00 0 00

5. Variablesx,, x, are basis, and x;, x, are free. The general expression can by

=3-6x, - 2x,,
obtained by the formula (5.11): { % X3 4
x,==2+4x+x,.
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The system has an infinite number of solutions. Let’s find a particular solution. For
example, for x, =x, =0 we have x, =3, x, =—2. Thus, column x=(3 -2 0 O)T

is a particular solution of the system. B

5.5. HOMOGENEOUS SYSTEM GENERAL SOLUTION STRUCTURE

A homogeneous system of linear equations

ayx, +apx, +-+a,x =0,
Ay X, + ayx, +-+a, x, =0
2
J 1" 2272 2n"n > or Ax =0
a,x+a,x,++a, x =0
is always consistent, because it has a trivial solution x, = x,=..=x,=0 (x=0).

If the rank of the matrix is equal to the number of unknowns (rg 4 =n), then

the trivial solution is the only solution.

Suppose thatr =rg A <n . Then a homogeneous system has an infinite number

of solutions.

Note that an augmented coefficient matrix of a homogeneous system (A | o) 1S
reduced by elementary transformations to simplified form (A' | o), 1.e.
bl=b,=..=b =0 in (5.10). Thus, from (5.11) we obtain a general solution of
a homogeneous system:

o o
‘xl - al r+l‘xr+l e al n‘xn >

(5.13)

! !

X, ==d X, —.—d.x

r rnn

Properties of homogeneous systems solutions

1.If columns o,,®,,....,¢, are solutions of a homogeneous system of
equations, then any linear combination o, @, +a,®, +...+a, @, is also the solution

of a homogeneous system.

2. If the rank of a homogeneous system coefficient matrix equals to 7, then the

system has (n —r) linearly independent solutions.
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Indeed, by the general solution formula (5.13) it is possible to find (n—r)
particular solutions o,,®,,...,¢, ., assuming free variables equal to standard value

sets (assuming that all free variables are equal to zero except for the one that equals

to 1):

T
1) xr+l=1’xr+2=09"'=xn:O: (plz(_a{rﬂ _a;r+l o - O) >

T
2) xr+l=o’xr+2=1="'=xn=0: (p2:(_a1'r+2 e _a;r+2 O 1 o O) 7
)
n—r) xr+1:07xr+2=07'~'>xn:1: (pn—r:(_alln _a;n O 0 ... 1) .

As the result we will get (7 —7) solutions:

! !’

'
—di, Q.49 —4,
[ '
_ar r+l _ar r+2 _ar n
(p1= 1 > (p2= O 2°°°> (pn—r= O >
0 1 0
0 0 1

which are linearly independent.

Any combination of (n—r) linearly independent solutions ¢,,®,,...,¢, , of
a homogeneous system is called a fundamental system of solutions.

Note that a fundamental system of solutions is defined ambiguously. A
homogeneous system can have different fundamental systems of solutions, each
consisting of the same number (n —r) of linearly independent solutions.

Homogeneous system general solution structure. If a set ¢,,0,,...,0,., i

a fundamental system of solutions of a homogeneous system (5.4), then the column
x:CI'(pl+C2'(P2+"'+Cn—r'(pn-r (5.14)

for any arbitrary values of C,, C,,..., C,__ is also a solution of system (5.4), and vice

n—r

versa, for any solution x of this system it is possible to find such values of C,, C,,...,

C

n-r’

that make equality (5.14) correct.
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Matrix ®=(¢, ¢, == ¢,,), which columns compose a fundamental

system of solutions of a homogeneous system, is called fundamental. By the

fundamental matrix, general solutions can be expressed in the following form

x=0-c,

where c=(C, - C,, )T — 1s a column of arbitrary constants.

Homogeneous system solution algorithm

1-5. Make the first five steps of Gauss—Jordan algorithm (section 5.4). At the
same time there is no need in checking consistency of the system (because any
homogeneous system has trivial solution), so step 3 can be skipped. Get formula
(5.11) of a general solution, which will be in form (5.13).

If the rank rof a matrix equals to the number of unknowns n (r=rg A=n),

then the system has a unique trivial solution x=o0 and the solution process
terminates.

If the rank of a matrix is less than the number of unknowns (rg 4 <n ), then the

system has an infinite number of solutions. The solution set structure will be found in
the next steps.

6. Find the fundamental system of solutions ¢,,®,,...,¢,_, of the homogeneous
system. To do this, it is necessary to put the set of (n—r) standard values (where all

free variable are equal to zero except for one) consecutively into (5.13) (property 2 of
homogeneous system solutions).

7. Write the general solution by the formula (5.14).

Example 5.4. Find fundamental systems of solutions and general solutions of
homogeneous systems:
X +x,+2x,+x,=0,

X +x,+2x,=0,
a b) {2x,+3x,+x,=0,

X +2x,+3x,=0; _
3x,+4x,+2x,+2x,=0.
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1 1 2|0
O a) 1. Compose the augmented coefficient matrix: (A | 0)=(1 5 3 ‘ O]'

2-4. By the elementary transformations of rows reduce matrix (4 | 0) to

echelon and then to simplified form (example 5.3,"c"):

11 2]0) (1 1 2]0) (1 0 1[0} ,.
(A1o)=11 5 510/ lo 1 1lol™l0 1 1]0)= 1)

Step 3 is skipped.

5. Variables x,, x, are basis and x, is free. Write formula (5.13) for the
general solution of the homogeneous system
{xl =-x,,
X, =—X,.
6. Find the fundamental system of solutions. As =3 and r=rgA=2, it is

necessary to find n—r»=1 linearly independent (i.e. nonzero) solutions. We put a

standard value of the free variable into the formula of the general solution. If x; =1,

then x,=-1, x,=-1, i.e. the fundamental system of equations consists of a single
column
-1
¢, =-1
1

7. Write the general solution of the homogeneous system by the formula (5.14):
-1
x=Cy-| =11,
1
where C, is an arbitrary constant.
X +x,+2x,+x,=0,
b) <2x,+3x,+x,=0,
3x, +4x,+2x, +2x,=0.
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1 1 2 1{0
1. Compose the augmented coefficient matrix (A | o)= 2 3 0 1|0/
3 4 2 210
2-4. By the elementary transformations of rows reduce matrix (4 | o) to
echelon and then to simplified form (example 5.3,"d"):
1 0 6 2|0
(4'|o)={0 1 -4 -1|0|. Step3isskipped.
0 0 0 0f0

5. Variables x,, x, are basis and x,, x, are free. Write formula (5.13) for the

, X =—6x,—-2x,,
general solution of the homogeneous system:
X, =4x,+x,.

6. Find the fundamental system of solutions. As n=4 and r=rgA=2, it 1s
necessary to find n—»=2 linearly independent solutions. Put standard value sets of
free variables into the system:

o if x,=1, x,=0,then x,=-6, x, =4;

o if x,=0, x,=1,then x, =-2, x,=1.

As the result we have obtained the following fundamental system of equations

—6 -2
4 1
(pl = 1 > (P2 = 0
0 1

7. Write the general solution of the homogeneous system by the formula
(5.14):

-6 -2
4 1
x=C;- ) +C, - 0
0 1

Note that the fundamental system of equations can be obtained with another set of

values of free variables, e.g. x;=1, x,=2 and x,=2, x, =3.
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Then we will get another fundamental system of equations

-10 -18
6 11
¢ = 11 0, =
2
and the following general solution
—-10 -18
x=C,- ¢ +C, - H
1 2
2 3

In spite of the difference, both formulas describe the same set of solutions. W

5.6. NONHOMOGENEOUS SYSTEM GENERAL SOLUTION
STRUCTURE

In section 5.4 there was the formula (5.11) of a system of linear equations
general solution. Let’s show another form, which represents the structure of a
solution set.

Consider an nonhomogeneous system

Ax=b
and the corresponding homogeneous system
Ax=o0.
Nonhomogeneous system general solution structure. Let x° be the particular

solution of an nonhomogeneous system and ¢,,0,,...,0,_, compose the fundamental
system of equations of the corresponding homogeneous system of equations. Then the
following column

x:xp+C1.(pl+C2'(p2+.”+cn—r.(pn—r (515)

for any arbitrary values of C,, C,,..., C__ is the solution of the nonhomogeneous

system, and vice versa, for any solution xof this system it is possible to find such

values of constants C,, C,,..., C___, that make equality (5.15) correct.

n-r’
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An nonhomogeneous system general solution is a sum of a particular solution
of an nonhomogeneous system and a general solution of the corresponding

homogeneous system:

— p
X X +C 0, +C 0, +4+C_ -0, .
R '
nonhomogeneous system homogeneous system
particular solution general solution

Nonhomogeneous system solution algorithm

1-5. Make the first five steps of Gauss—Jordan algorithm (section 5.4) and get
the nonhomogeneous system general solution formula in a form (5.11).

6. Find a particular solution x* of the nonhomogeneous system by substituting
free variables in (5.11) with zero.

7. Write formula (5.13) of the corresponding homogeneous system general

solution and compose its fundamental system of solutions ¢,,®,,....¢, .. To do this
it is necessary to put (n—r) standard sets of values (where all free variables are

equal to zero except for one) consecutively in (5.13).
8. Write the nonhomogeneous system general solution by the formula (5.15).
Note that the nonhomogeneous system solution ( Ax = b ) can be expressed with
the fundamental matrix @ of the corresponding homogeneous system Ax =0 in the
following form
x=x"+d-c,
where x* 1s a particular solution of the nonhomogeneous system;

¢=(C, - C,,) - arbitrary constants column.

Example 5.5. Find the nonhomogeneous system general solution structure
(5.15):
X +x,+2x,+x,=1,

X +x,+2x,=4,
a b) <2x,+3x,+x,=0,

X +2x,+3x,=5;
3x,+4x,+2x,+2x, =1,
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O a) 1-5. The first five steps of Gauss-Jordan algorithm were performed during the
solution of example 5.3,"c". The following formula for the nonhomogeneous system

general solution was obtained:

Variables x,, x, are basis; x, is free.

6. Assuming x, =0, we obtain the particular solution of the nonhomogeneous
system x* =(3 1 O)T (example 5.3,"c").

7. Find the fundamental system of equations of the corresponding
homogeneous system (example 5.4,"a"): ¢, = (—1 -1 l)T .

8. By the formula (5.15) write the nonhomogeneous system general solution

3 -1
x=x"+C-o=|1|+C, | -1].
0 1

The 1nitial solution set structure is found.
X +x,+2x,+x,=1,
b) <2x,+3x,+x,=0,
3x,+4x,+2x,+2x, =1,

1-5. The first five steps of Gauss-Jordan algorithm were performed during the
solution of example 5.3,"d". The following formula for the nonhomogeneous system
general solution was obtained:

x, =3-6x,-2x,,
X, =-24+4x,+x,.
Variables x,, x, are basis; x,, x, — free.
6. Assuming x,=0, x,=0, we obtain the particular solution of the

nonhomogeneous system

¥=(3 -2 0 0).
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7. Find the fundamental system of solutions of the corresponding homogeneous

system (example 5.4):
o=(-6 4 1 0Y, o¢=(=2 10 1)

8. Write the nonhomogeneous system general solution by the formula (5.15):

3 -6 -2
*+C -9, +C N +C ! +C
X=X . L, = . .
1Py 2 P, 0 Ul 2’ o
0
The 1nitial solution set structure is found.
EXERCISES

1. Solve the system using Gauss—Jordan algorithm:
X +2x,+2x,=m,
2x,+4x,+3x,=n.
2. Find the fundamental system of solutions and write the general solution structure:

{x1+x2+nx3+mx4=0,
2x,+3x,+x,+x,=0.
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CHAPTER 6. EIGENVECTORS AND EIGENVALUES
OF MATRICES

6.1. BASIC DEFINITIONS AND PROPERTIES
X

Let A be a square matrix of order . A nonzero column x=| : |, that satisfies

A-x=A-x, (6.1)
is called an eigenvector of matrix A4.
The number A in equality (6.1) is called an eigenvalue of matrix 4. We say
that x is an eigenvector corresponding to the eigenvalue A .
Let’s set a problem of matrix eigenvalues and eigenvectors calculation.

Definition (6.1) can be rewritten as
(A-AE)-x=o0,

where E is an identity matrix of order n. Hence, condition (6.1) is a homogeneous

system of n linear algebraic equations with » unknowns x,,x,,...,x,:

n

(a,-A)x +a, x,+...+a,x,=0,

< ay X +(ay —-X)x,+...+a,, x, =0, 62)

L a, X +a,x,+...+(a,-1)x,=0.

nn

Since we are only interested in nontrivial solutions (x#o0) of the

homogeneous system, then the determinant of the system matrix must be equal to

ZEro0:
a, — A a,, a,,
a - A
det(4-aE)=| @ 2 “n g, (6.3)
anl anZ ann - }\‘

Otherwise by Cramer’s rule the system has a unique trivial solution.
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The problem of eigenvalues calculation is reduced to the solution of the

equation
a,—A  a, 1n
det(A-aE)=| % . o ]=0,
anl an2 e ann - }\’

which is called the characteristic equation of matrix A.

The roots of the characteristic equation (6.3) are the only eigenvalues of a
matrix.

By the fundamental theorem of algebra in the general case the characteristic
equation has n complex roots (counted with multiplicity). Any square matrix has
eigenvalues and eigenvectors.

Eigenvalues of a matrix are uniquely determined (counted with multiplicity)
and eigenvectors are ambiguously determined. A set of all eigenvalues of a matrix
(counted with multiplicity) is called its spectrum. The spectrum of a matrix is called
simple, if all its eigenvalues are pairwise different (all roots of the characteristic

equation are simple).

6.2. PROPERTIES OF EIGENVECTORS AND EIGENVALUES

Let A be a square matrix of order 7.

1. Eigenvectors corresponding to different eigenvalues are linearly
independent.

2. A nonzero linear combination of eigenvectors corresponding to one

eigenvalue, 1s an eigenvector corresponding to the same eigenvalue.

3. Let (A—AE)" be the adjoint matrix to the characteristic matrix (4—AE). If

A, 1s an eigenvalue of matrix A4, then any nonzero column of matrix (A - A E )+ 1s

an eigenvector corresponding to the eigenvalue A, .

4. To extract the maximum linearly independent subsystem from the set of

eigenvectors, it is necessary for all distinct eigenvalues A,,...,A, write in sequence
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systems of linearly independent eigenvectors, in particular write in sequence the
fundamental systems of solutions of homogencous systems

(A-ME)-x=o0, (A-ME)-x=0,..., (A-ME)-x=o0.
Algorithm for calculation of eigenvectors and eigenvalues

To calculate eigenvectors and eigenvalues of a square matrix 4 of order n we
should make the following steps:

1. Compose the characteristic equation of the matrix

A (L)=det(4-1AE).

2. Find all distinct roots A,,..., A, of the characteristic equation A, (A)=0; it is
not necessary to find multiplicities »,,n,,...,n, (n,+n,+...+n, =n) of the roots.

3. For the root A=A, find the fundamental system of solutions ¢,,®,,...,¢, .
(r=rg (A -ME )) of a homogeneous system of equations

(A-ME)-x=o0.

To do this we can either use the algorithm for solving a homogeneous system

or one of the methods for finding a fundamental matrix.

4. Write down linearly independent eigenvectors of A that correspond to the

eigenvalue A, :

Sl =(:'1 .(pl’SZ :CZ .(pZ""’Sn—r :Cn—r (p (64)

where C,,C,,...,C_, are nonzero arbitrary constants. A set of all eigenvectors
corresponding to the eigenvalue A, consists of nonzero columns that have the form

s=C,-¢,+C,-¢,+..+C,_ -9, . Hereinafter we will denote eigenvectors of a

matrix by the letter s .

Repeat steps 3 and 4 for other eigenvalues A,,...,A, .

Example 6.1. Find eigenvalues and eigenvectors of matrices:

111

1 -2 0 2

A= CB=|11 1|,C= .

3 8 2 0
111
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O Matrix A

1. Compose the characteristic polynomial of the matrix:
-3 =2
Ay (7”) -

3 8-A
2. Solve the characteristic equation:

=(1-2)(8-21)+6=22-91+8+6=2A"~9A+14.

A -9%+14=0 = X, =2, &,=7 (simple spectrum).

3'. For the simple root A, =2 compose a homogeneous system of equations
(A-ME)-x=o0:

1-2 -2 X, 0 -1 =2) (x) (0
3 8-2)lx,) |0 3 6 )\x,) l0)
Solve this system using Gauss—Jordan algorithm, reducing the augmented coefficient

matrix to the simplified form:

-1 =20 1 2|0 1 21]0
3 6|0 3 610 0 0|0)
The rank of the system matrix is equal to 1 (#=1), the number of unknowns is n=2,

hence a fundamental system of solutions consists of one (n—7=1) solution.

Denominate the basis variable x, by the free one: x, =-2x,. Suppose x,=1, and
: , -2
obtain the solution ¢, =[ : ]
4'. Write eigenvectors corresponding to the eigenvalue A, =2: s =C, -,
: : -2
where () is a nonzero arbitrary constant: s, =C-¢, =C, [ ] :

1

3%, For the simple root A, =7 compose a homogeneous system of equations
(A-A,E) x=0:

1-7 =2 ) (0 6 =2\ (x) (0
3 8-7)lx,) (0 3 1 )1x,) (0)
Solve this system using Gauss—Jordan algorithm, reducing the augmented coefficient

matrix to the simplified form:
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W=

-6 =210 3 110 1 110) (1 0
3 110 (-6 =-2|0 -6 =20, \0 0)

The rank of the system matrix is equal to 1 (7 =1), the number of unknowns is n =2,

o

hence a fundamental system of solutions consists of one (#n—r=1) solution.

: : : 1
Denominate the basis variable x; by the free one: x, =—=x,. Suppose x,=1, we
3

_1
have the solution @, =[ 13].

4> Write eigenvectors corresponding to the eigenvalue hy=T7: 5,=C,-0,,

_1
where C, 1s a nonzero arbitrary constant: s,=C,-¢,=C, ( 13].

Matrix B :
1. Compose the characteristic polynomial of the matrix:
I-A 1 1
Ay(M)=|B-2E|=| 1 1-1 1 |=(1-2) +2-3(1-2)=-1>+32%.
1 I 1-A

2. Solve the characteristic equation: —A*+32*=0 = A,=3, A,=1,=0

(spectrum).

3'. For the simple root A, =3 compose a homogeneous system of equations

(B—klE)-xzo:
1-3 1 1 X, 0 —2x,+x,+x,=0,
I 1-3 1 ||x,|=|0] or X =2x,+x,=0,
1 I 1-3) {x 0 X +x,=2x,=0.

Solve this system using Gauss—Jordan algorithm, reducing the augmented coefficient
matrix to the simplified form (pivot elements are in bold italics):
-2 1 110 1 1 210

(B-ME|o)=| 1 =2 1]0[~[-2 1 1 |0]~
1 1 =200) (1 =2 1]0
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1 1 210 1 1T =210 I 0 -1{0
~10 3 -310|~]0 1 -1]|0|~|0 1 -1]0].
0 -3 310 0 0 010 0 0 01O

The rank of the system matrix is equal to 2 (7 =2 ), the number of unknowns is

n =3, hence a fundamental system of solutions consists of one (n—r=1) solution.

. . . 'x =x >
Denominate basis variables x,, x, by the free one x;: { b
X, =X,
1
and, suppose x, =1, we obtain the solution ¢@=|1|.
1

4!, Calculate all eigenvectors corresponding to the eigenvalue A =3 by
formula s =C, -, where C, is a nonzero arbitrary constant.
3%. For the double root A, =A, =0 we have a homogeneous system B-x=o0.

Solve it by using Jauss—Jordan algorithm:

1 11]0 I 1 1/0
(B|0)=1110~0000.
1 11]0 0 0 0]0

The rank of the system matrix is equal to 1 ( =1), hence a fundamental system
of solutions consists of two (7 —r =2 ) solutions.

Denominate the basis variable x, by the free ones x, =-x,—x,. Assuming
standard value sets of free variables x,=1,x,=0 and x,=0, x; =1 we obtain two

-1 -1
solutions: ¢, =| 1 |, o@,=| 0
0

4*. Write a set of eigenvectors corresponding to the eigenvalue A,=0:
s=C, -9, +C,-0,, where C,, C, are arbitrary constant, not equal to zero at the same

time.
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In particular, for ;,=0, C,=-1 we have s,=(1 0 -1)'; for ¢, =-1,
C,=0 we have s,=(1 -1 0). Adding the eigenvector s,=(1 1 1)

corresponding to the eigenvalue A, =3 (see step 4' for C, =1), to these eigenvectors,

we find three linearly independent eigenvectors of matrix B:

1 1 1
s;=1 0 [, s,=|-1]|, =1
-1 0 1

Matrix C:

1. Compose the characteristic polynomial of the matrix:

Ac-(M)=|C -2k |= :2 _zx‘=(—x)(—x)+4=x2+4.

2. Solve the characteristic equation:
M +4=0 = A,=2i, L,=-2i (simple spectrum).
3'. For the simple root A, =2i compose a homogeneous system of equations

(C-ME)-x=o0:

Solve this system using Gauss-Jordan algorithm, reducing the augmented
coefficient matrix to the simplified form:

=2i 210 1 i |0Y (1 iloO
-2 =2il0 -2 =2i|0 0 0/0)

The rank of the system matrix is equal to 1 (# =1), the number of unknowns is

n =2, hence a fundamental system of solutions consists of one (#—r=1) solution.

Denominate basis variable x;, by the free one: x;, =—ix,. Suppose x,=1, we

obtain the solution ¢, = [_ll]

4'. Write eigenvectors corresponding to the eigenvalue A, =2i: s,=C,-@,,
where (] is an arbitrary nonzero complex number.
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3%, For the simple root A, =—-2i compose a homogeneous system of equations

2 )G}

Solve this system using Gauss—Jordan algorithm, reducing the augmented
coefficient matrix to the simplified form:

2i 210 1 —-i|0) (1 —i|O0
-2 2i|0 -2 2i|0 0 0]0)

The rank of the system matrix is equal to 1 (» =1), the number of unknowns is

(C-21,E)-x=0:

n =2, hence a fundamental system of solutions consists of one (n—r=1) solution.

Denominate the basis variable x, by the free one: x, =ix,. Suppose x, =1, we
. I
have the solution ¢, = {1]

4%, Write eigenvectors corresponding to the eigenvalue A, =-2i: 5,=C,-0,,

where C, is an arbitrary nonzero complex number.

EXERCISES

Find the eigenvalues and corresponding eigenvectors of matrices:

n n n

m m
a)[ ]; b)lm m m)|.
" 11 1
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CHAPTER 7. QUADRATIC FORMS

7.1. DEFINITION

A quadratic form in vaniables x,,...,x_ is an expression given by
q(x)= ZZale.xj , (7.1)
=1 j=1
where coefficients a,, not all equal to zero, satisty the symmetry conditions a, =a,,,
i=1,.,n, j=1,...n. We put this restriction without loss of generality, since a sum of
two similar terms a,x,x, +a,x x, with unequal coefficients a, #a, (for i= ;) can

always be replaced by a sum a;x,x; + @’ x,x, with equal coefficients, setting

a +a,
a =d =—L—2L

) Jt 2

Let’s consider real quadratic forms, coefficients of which are real numbers

and variables take real values.

Combining terms the quadratic form (7.1) can be rewritten as

2 2 2
q(x)=a,,x; +2a,X,%, + ...+ 20, XX, + A, Xy +20,%,%, +...+a, X (7.2)

nn""n "

This is a quadratic form with combined terms.

A symmetric matrix 4 =(q,), made up from coefficients of the quadratic form

(7.1) is called a matrix of the quadratic form. The determinant of this matrix is
called the discriminant, and its rank is called the rank of a quadratic form.

A quadratic form is called singular if its matrix is singular (rg A <n), otherwise if
the matrix 1s nonsingular (rg 4 =n), a quadratic form is called nonsingular.

Composing a column matrix of variables x=(x, -~ x,)" a quadratic form
can be written in matrix form:

g(x)=x"-A-x. (7.3)

An important example of a quadratic form is the second differential of

function f(x) with vector argument x=(x;, - x)":
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4 f(x) = Z af(x)dxdx dTa;leS;)dx (7.4)

=1 j= z ]

where differentials dx,,...,dx are variables of the quadratic form; a matrix of

second-order partial derivatives (Hessian matrix)

’fx) S
ox;] Ox,0x,

df(x) _ [62f(x)] _ (7.5)

d'dx | ox,ox, , , '
A C) i C))
ox, Ox, ox>

computed for a fixed value of an argument, is a matrix of the quadratic form, and the

differential of vector argument dx = (dx, --- dx,)" is a column of its variables.
Example 7.1. For the function f(x)=2x+xx,+x. write the second

differential d”f(x) in matrix form (7.4).

O The given function f(x)= f(x,x,) has two arguments x,, x,. Compose the

matrix of second order differentials, i.e. the Hessian. First find first-order partial

derivatives:

W) gy v W)

=X, +2x
1 2
ox, 0Xx, ’

and then — second-order partial derivatives:

@, I _ 2w, P,

o x? © dx0x, 0x,0x, = 0x’

2 4 1
Then by formula (7.5) compose the Hessian matrix AAC)] = :
0x,0X, 1 2

The second differential of function f(x)= f(x,,x,) is a quadratic form (7.4) of

2
differentials dv,, dv,: d*f(x)=3"Y Z f;") dx, dx, = 4dx? + 2dx,dx, + 2dx? =
=l j=1 X, 0X

= (d, arxz)-[;1 ;]-[Zj:de-G ;]-dx.l
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Any quadratic form g(x)=x"4 x can be transformed to the canonical form
q(SY) =My} +0yY; +ot Ny,
via linear non-degenerate change of variables x =Sy (detS =0) where A,,...,A are

eigenvalues of matrix A4.

7.2 DEFINITE AND INDEFINITE QUADRATIC FORMS

A real quadratic form g(x)=x"-A4-x is called positive (negative) definite if
q(x)>0 (g(x)<0) for any x=#o. Positive and negative definite forms are called

definite.
If a quadratic form takes on both positive and negative values, it is called

indefinite. Definite and indefinite quadratic forms are denoted by g(x)>0, g(x) <0,
q(x) 20, respectively.

A minor of 4 of order k£ is principal if it is obtained by deleting (n — k) rows
and the (n — k) columns with the same numbers. The leading principal minor of A

of order k£ is the minor of order £ obtained by deleting the last (» — k) rows and

columns.
Sylvester’s criterion. A quadratic form q(x)=x"-A-x is positive definite if

and only if all leading principal minors of its matrix are positive:

a, a,

A=a,>0, A, = >0,..., A,=det4>0.

a, dy

A quadratic form is negative definite if and only if leading principal minors of its

matrix change signs starting from the negative one:

a, 4y

A=a,<0, A= >0,..., (-1)"A,=(-1)"det4>0.

a a

21 22

A quadratic form is indefinite if at least one principal minor of even order is
negative, or two principal minors of uneven order have different signs (sufficient

criterion for indefiniteness of a quadratic form).
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Criterion for definiteness and indefiniteness of quadratic form
by eigenvalues of its matrix

Let A;,A,,...,A, be eigenvalues of matrix A4, corresponding to a quadratic

form g(x)=x"-A-x . Eigenvalues of a real symmetric matrix are real.

1) A quadratic form g(x)=x"-A4-x is positive definite if and only if all
eigenvalues of its matrix are positive: A, >0, A, >0,..., A, >0.

2) A quadratic form g(x)=x"-A4-x is negative definite if and only if all
eigenvalues of its matrix are negative: A, <0, A,<0,..., A, <0.

3) A quadratic form g(x)=x"-A4-x is indefinite if and only if its matrix has
both positive and negative eigenvalues, i.e. 2A,-A, <0 for at least one pair of
eigenvalues (i # j, 1<i<n, 1< j<n).

Example 7.2. Determine whether quadratic forms of the given matrices are

positive definite, negative definite or indefinite

-1 1 1
11 -2 2
A= ; B= ;, C=] 1 -1 1.
1 2 2 -5
I 1 =2
O The quadratic form g(x)=x"-4-x=x"+2xx, +2x; is positive definite, since all
leading principal minors of its matrix A4 are positive: A, =1>0, A,=1>0 (see
Sylvester's criterion).
The quadratic form g(x)=x"-B-x=-2x" +4x.x, —5x. is negative definite,
since leading principal minors of its matrix B change signs, starting with the negative

one: A, =-2<0, A, =6>0 (see Sylvester's criterion). Let’s check this conclusion by

examining eigenvalues of matrix B:

-2-A 2

det(B—?»E)=‘ 5 s

‘=O & M+TA+6=0.

Hence, A, =-6, A, =-1. Since both eigenvalues are negative, the quadratic

form is negative definite. Thus, the quadratic form is definite.
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The quadratic form g(x)=x"-C-x=—x"+2x.x, + 2xx, — X3 + 2x,x, — 2x. is
neither positive nor negative definite, since its leading principal minors do not meet
Sylvester’s criterion: A, =—-1<0, A, =0, A,=4>0 (conditions (7.12) and (7.13)

are not fulfilled). Let’s calculate principal minors of this matrix:

MIB A, —detC=4.

There are minors of uneven order that have different signs, e.g. M, =-1<0,

M7 =4>0. Hence, the quadratic form is indefinite (see criterion for indefiniteness).

Let’s check this conclusion by examining eigenvalues of matrix C':

~1-2 1 1
det(C-AE)=| 1 -1-2 1 |=0 o A +402+24-4=0.
1 1 2-%

Hence, A, =-2, A,=-1 -3, A= ~1++/3. Since the matrix has both
positive and negative eigenvalues (A, A, =-2-(-1+ V3 )<0), the quadratic form
g(x)=x"-C-x is indefinite. M

EXERCISES

Determine whether quadratic forms are positive definite, negative definite or

indefinite (by Sylvester’s criterion) and calculate norms of corresponding matrices:
a) f(x)=mx}—nx +nx;+mx,+xx,+2;

b) f(x)=—x'+2nx —4x]—4mx,-n* —m".
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PART II. ANALYTIC GEOMETRY

CHAPTER 8. VECTOR ALGEBRA
8.1. VECTORS AND VECTOR LINEAR OPERATIONS

8.1.1. Vector, Its Direction and Length

A vector is an ordered pair of points. The first point is called vector tail, the
second — vector head. A distance between head and tail is called length.

A vector with coincident tail and head is called zero vector, its length equals to
zero. If vector length is a positive value, then it is called nonzero vector.

A nonzero vector can be defined as a directed segment. One of its bounding
points is considered as the first (vector tail), and another — as the second (vector
head). Zero vector direction is, obviously, not determined.

A vector with the beginning in point 4 and ending in point B is denoted by
AB and depicted by arrow, directed to vector head (Fig. 8.1). Vector tail is also
called point of application. Vector AB is applied to point A. The length of vector

AB equals to the length of segment AB and it is denoted by |Zl§ | With this

notation, vector length is also called magnitude, absolute value.

B
B e

A C

Figure 8.1

A zero vector, e.g. CC, is denoted by symbol o and depicted by point (point
C on Fig. 8.1).

A vector, which length equals to unit or assumed as a unit, is called unit
vector.
Nonzero vector AB, beside directed segment, defines ray AB (with the
beginning in point 4) and line AB .
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Two nonzero vectors are called collinear, if they belong to one line or to two
parallel lines, otherwise they are called noncollinear. Vector collinearity is denoted
by symbol ||. A zero vector is considered as collinear to any vector, because its
direction is not defined. Any vector is collinear to itself.

Equally and oppositely directed nonzero collinear vectors are denoted by T1
and TV accordingly.

Three nonzero vectors are called coplanar, if they lie in the same or parallel
planes, otherwise they are called noncoplanar. Zero vector is coplanar to any other
two vectors, because its direction is not defined.

Two vectors are equal, if they:

a) are collinear and equally directed,

b) have equal lengths.

All zero vectors are equal to each other.

This definition of equality characterizes so-called free vectors. Given free
vector can be moved without change of its direction and length to any point of space
(apply it to any point). As the result we will obtain vectors, which are equal to the
given one.

It is possible to give equivalent definitions of collinearity and coplanarity.

Two nonzero vectors are called collinear, if they lie on one line after
application to the same point.

Three nonzero vectors are called coplanar, if the lie in one plane after
application to the same point.

Angle between nonzero vectors is an angle (not greater than )

between vectors, which are equal to them and applied to the same point.
Consider two nonzero vectors @ and b (Fig.8.2). Construct equal vectors OA

and OB. In the plane, which contains rays O4 and OB, we will obtain two angles

AOB . The smaller one, which value ¢ is not greater than © (0 <@ <m), is taken as

an angle between @ and b .
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¢
20— @ 4

Figure 8.2
It is not possible to define angle between two vectors if at least one of them is
zero, because zero vector direction is not defined. From the definitions it follows that
angle between nonzero collinear vectors equals to zero (if vectors are equally
directed) of equals to 7 (if they are oppositely directed).
Example 8.1. Consider triangle ABC ; points L, M , N are midpoints of its

sides. For vectors in Fig. 8.3, determine which of them are collinear, equally directed,

oppositely directed and equal. Show angles between vectors AM and AN, MC and

CL., AM and MC, CL and BL .

Figure 8.3

[0 By the triangle mid-segment theorem we conclude that AL || AB, LN || AC . Thus

vectors AM , MC, NL are collinear (because they lie on one or parallel lines),

equally directed and have the same length, hence, they are equal: AM = MC = NL .

Similarly, AN =ML, AN N BN, BNV ML, CLM BL.Vectors AM and AN

form angle o, vectors MC and CL — angle B . The angle between vectors AM and

MC equals to zero, because they are equally directed, and the angle between CL and

BL equals to ©, because they are oppositely directed. B
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8.1.2. Linear Operations on Vectors

A sum of two vectors @ and b is a vector OB=a +b (Fig. 8.4, a), which tail
coincides with the tail of vector OA=a , and head — with the head of vector AB=b

(triangle rule).
A product of nonzero vector a and real number ). (AL +0) 1s a vector A-a,

which satisfies the following conditions:
e | Aa|=|1|-|a@

>

a) the length of vector A -@ equals to | A || a

b)vectors A-a@ and @ are collinear (A-a || @),

c¢) vectors A-a@ and @ are equally directed, if A >0, and oppositely directed, if
A <0 (Fig. 84, b).

A product of a zero vector and any arbitrary number A is a zero vector (by

definitions): A-0=0; a product of any vector and zero is also a zero vector:

0O-a=o0.
OC=04A+0B=a+b \ @ (L>0) b
B -b
OV N V /_\— F
a / a a —
A / 2@ (h<0) a-b\/“ _
\—\ b b
a
a b c d
Figure 8.4

A vector (—a ) is called opposite to vector @, if their sum equals to zero vector:

, and is collinear and

a+(-a)=o0. The opposite vector (-a) has length |a
oppositely directed to vector @. A zero vector is opposite to itself. Note that
(-@)=(-1)-7.

The difference between vectors @ and b is the sum of vector @ and vector

(=b) opposite to vector b: @—b=a+(-b) (Fig. 8.4, ¢). In other words, the
difference @ —b of vectors @ and b — is a vector, which sum with » gives vector @

(Fig. 84, d).
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Addition and multiplication by number operations are called linear operations
on vectors.

Vector @ is called a linear combination of vectors @,,a,,...,a,, if it can be

expressed in the following form
a=o,d, +0,d, +..+o,d,

where «,,a.,,...,0, — are some numbers. In this case it is said, that vector a is
decomposed by vectors a, ,a,,...,a,, numbers o,,q,,...,0, are called decomposition

coefficients.

To find a sum of several vectors you should construct a polyline from vectors,
which are equal to the given ones, by applying the second vector to the first vector
head, the third vector to the second vector head and so on. Then the locking vector,
which connects the first vector tail with the last vector head, equals to the sum of all
vectors of polyline (polyline rule).

Example 8.2. For vectors on Fig. 8.3 find the following sums and differences:

BN+ AM ; AM —~BL; AN+AM ; BN +AM +CL. Decompose vector AC by

vectors BN and BL .

0 Taking into account that AM =NL, by the triangle rule we obtain

BN + AM =BN + NL = BL .
Since BL=-CL and W:M_C,then AM - BL=MC +CL = ML .

Since ML = AN , then by the triangle rule AN + AM = AM + ML = AL .
Since BN + AM = BL and CL = —E, we obtain

BN +AM +CL=(BN+A4M )+CL=BL-BL=5.

SNY————— -BL

BL

Since BA+AC =BC, BA=2-BN ,BC=2-BL,then AC=-2-BN+2-BL.®
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8.2. ORTHOGONAL PROJECTIONS OF VECTORS

An orthogonal (direct) projection of point A to line | is a foot of
perpendicular 4,, constructed from point A to line / (Fig. 8.5, a). An orthogonal

(direct) projection of point A to plane w is a foot of perpendicular 4, constructed

from point A4 to plane n (Fig. 8.5, b).

A TA
e R

Figure 8.5

An orthogonal projection of vector a =AB to line | is vector a =E,
which tail is the orthogonal projection A4, of point4 and head is the orthogonal
projection B, of pointB (Fig. 8.6, a — plane case, Fig. 8.6, b — space case). An
orthogonal projection of vector @ to line / will be denoted by %a_ .

An orthogonal projection of vector a to axis, formed by vector € # 0 , 1s its

orthogonal projection to line, which contains vector €. This projection will be

denoted by proj.a.

An orthogonal projection of vector a =AB fo plane & is vector a, = A B_,
which tail is the orthogonal projection 4. of point 4 to plane n and head is the

orthogonal projection B_ of point B (Fig. 8.6, ¢). An orthogonal projection of vector

a to plane © will be denoted by proj_ a.

The difference between vectors @ and its orthogonal projection is the

orthogonal component of vector @ relative to line (a,,=a,, on Fig. 8.6, a) or

plane (a . onFig. 8.6, ¢).
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/| — _Bl e { 1 T .4
prole? L pro.a
a b c
Figure 8.6

Algebraic value of projection length

Let @ be an angle between nonzero vector a and axis, formed by vector

e #0 ,1.¢. angle between nonzero vectors @ and e .

The algebraic value of length of vector a orthogonal projection to axis,

Jformed by vector e =0 is the length of its orthogonal projection proj.a, taken with

positive sign if angle ¢ is not greater than £, and with negative sign if angle ¢ is

greater than % (Fig. 8.7).

Properties of projection length algebraic values:

o Algebraic value of projection length of vector sum equals to the sum of

summands algebraic values of orthogonal projection lengths.

o Algebraic value of orthogonal projection length of vector and number
product equals to the product of this number and algebraic value of this vector

orthogonal projection length.
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projzﬁz|@gc7 =|c7|-cos<p pr0j55=—|p70jzl7|=|l7|-cosw

x|

Figure 8.7

Example 8.3. Bases 4B and CD of equal-sided trapezium ABCD are equal
to a and b accordingly; point A/ is the middle point of BC (Fig. 8.8).

Figure 8.8

Find algebraic values of orthogonal projection lengths of vectors AM and MD to
axis, formed by vector AB.

O Let DL be trapezium height, N —intersection point of lines AB n DM .
By the property of equal-sided trapezium: AL :aT—b; from the equality of

triangles CDM and BNM : BN =CD=5b. Denote required algebraic values of

orthogonal projection lengths by x = proj~AM , y = projﬁm. From the equalities

AM +MD = AD , AM — MD = AM + MN = AN and Property 1 we have:

a->b
2

projﬁ(m+m) = projA—Bm+ projﬁmz projA—BE, 1e. x+y=

>

proj4 (W —m) = projﬁm - projﬁm = projﬁm, 1.e. x—y=a+b.
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. +y=4azb = ’
Solving the system TTYETTT e obtain 4 ie.
X—-y=a+b, y=—%3b,
. —— 3a+b —
proj AM = %, projzMD =~ a+3b .

4
8.3. BASIS AND VECTOR COORDINATES
8.3.1. Basis on Line. Vector Coordinate on Line

A basis on line is any nonlinear vector € on this line (Fig. 8.9). This vector @

1s called basis.

x|

.a=xoe /

Figure 8.9

Theorem of vector decomposition on line. Any vector a, which is collinear to
the line, can be decomposed by basis e on this line, i.e. represented in a form
a=x-e,where number x is uniquely defined.

The coefficient x in decomposition is called vector coordinate a relative to
basis . All nonzero vectors equally directed with vector @ have positive
coordinates, and oppositely directed — negative. A zero vector coordinate equals to
Zero.

Example 8.4. Given vectors @=-2-2 and b =42, parallel to axes, formed
by vector @ =0 . Find coordinates of vectors @+b ; b ; @—b; 3-@+2-b relative
to basis @, and coordinate of vector @+ b relative to basis 5 .

O By the property of collinear vectors we find decompositions by basis e
a+b=-2-g+4-c=(-2+4)-2=2.2;
—b=(-1)-b=(-1)-4-2=—14-7;
a-b=-2-e-4.e=(-2-4)-e=-6-¢2;
3-a+2-b=3-(-2-2)+2-(4-2)=[3-(-2)+2-4]-e=2-2.
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Thus 7+b =2-2¢ =%-5 . Note, that vector @ + b , relative to basis ¢, has coordinate

equal to 2, and relative to basis » — coordinate equal to L e vector has unequal

2 >
coordinates relative to different bases. B

8.3.2. Basis on Plane. Vector Coordinates on Plane

A basis on plane is a system of two noncollinear vectors g ,e, of this plane,

taken in specific order (Fig. 8.10). These vectors ¢,,¢, are called basis.

Figure 8.10

Theorem of vector decomposition on plane. Any vector @ of a plane can be

decomposed by basis e ,e, on this plane, i.e. it can be represented in a form
a=x,-¢ +Xx,-¢,, where numbers x, and x, are uniquely defined.

Coefficients x, and x, in decomposition are called coordinates of vector a
relative to basis e,,e, (number is called abscissa and x, — ordinate of vector a ), e.g.
numbers 2 and -3 are coordinates of vector a=2-¢ —3-e, (x =2- abscissa,
x, ==3 — ordinate).

A basis on plane is called right (or an ordered pair of noncollinear vectors is

called right pair), if the shortest turn from the first vector to the second one is

counterclockwise (this direction is assumed as positive). Basis vectors ¢, e, (Fig.

8.11, a) of right basis are ordered as thumb and forefinger of right hand (if we look at

palm).
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A left basis on plane (left pair) is such a basis, that the shortest turn from

vector g to vector e, is clockwise (this direction is assumed as negative). Basis

vectors g,e, (Fig. 8.11, b) of left basis are ordered as thumb and forefinger of left

hand (if we look at palm).

Figure 8.11
8.3.3. Basis in Space. Vector Coordinates in Space

A basis in space is a system of three noncoplanar vectors e,,e,,¢,, taken in

specific order (Fig. 8.13). These vectors ¢ ,¢, e, are called basis.

Figure 8.13

Theorem of vector decomposition in space. Any vector @ can be decomposed
by basis e,e,,e, in space, 1.e. represented in a form a =x,-¢e, +Xx, e, + X, - €, where
numbers x,, x,, x, are uniquely defined.

Coefficients x;, x,, x, in decomposition are called coordinates of vector a
relative to basis e ,e, e, (number x, is called abscissa, x, — ordinate, x, — applicate
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of vector @), e.g. numbers 3, 2, —1 are coordinates of vector a=3-¢,+2-¢, ¢,
(x, =3 — abscissa, x, =2 — ordinate, x; = -1 — applicate).

A basis in space is called right (ordered triplet of noncoplanar vectors is called
right triplet), if looking from the head of the third vector the shortest turn from the
first vector to the second one is counterclockwise (Fig. 8.14, a). If the described turn

is clockwise, then the basis is called left (ordered triplet of noncoplanar vectors is
called left triplet) (Fig. 8.14, b).

Figure 8.14

8.3.4. Linear Operations in Coordinate Form

Theorems of vector basis decomposition determine one-to-one correspondence
between a set of vectors in space and a set of their coordinates in current basis, to be
exact: between vectors on line and real numbers, between vectors on plane and
ordered pairs of numbers, between vectors in space and ordered triplets of numbers.

For  example, in fixed basis (2)=(g,s,e) for vector
a=x-¢+x,-¢+x,-e there 1s a uniquely specified ordered triplet of numbers
X,,X,,X,, and vice versa, any for any ordered triplet of numbers x,,x,,x, there is a
vector d =X, ¢ + X, €, +X;-¢,1¢€.

Eg (x, %5, %5) .

Example: if vector @ in basis (¢)=(g,¢,e) has decomposition
a=2-¢,-3-g,+4-¢, then this vector corresponds to triplet (2,—3,4) and vice
versa.

A zero vector in any basis corresponds to a zero triplet (0, 0,0).
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It is convenient to represent vector coordinates as a column-matrix (or row-

matrix), which are called coordinate columns (coordinate rows).

In basis (¢)=(g.e,,¢e) vector d=x -2 +x,-¢+x,-g corresponds to
xl
coordinate column g=|"% | Basis notation (&) can be omitted, if it does not lead to
e
X3

ambiguity.
Vector linear operations correspond to coordinate columns linear operations,

e.g. if in basis () vectors @ and b correspond to vector columns a and b, then

their linear combination CT=a-a+-b corresponds to coordinate column
c=a-a+P-b,1.e. coordinate column of vectors’ linear combination equals to linear

combination of its coordinate columns.
Note: concepts of linear dependence and linear independence of systems of

columns with all properties transfer to vectors and coordinate columns.
Example 8.5, Vectors @ and b relative to basis ¢,¢,,e, have coordinates
2,0, =3 and 4, 2, -1 accordingly.
Find coordinates of vectors @+b , a—b , 3-@+2-b relative to the same basis.
[0 Write basis decompositions of the given vectors:
a=2-g+0-e,-3-5; b=4-2+2-2,-1-%.
Using the properties of linear operations, find basis decomposition of the given
vectors:
a+b=(2+4)g+(0+2)-g,+(-3-1)-5,=6-2+2-7,-4-7;
a-b=(2-4)-g+(0-2)-g,+(-3+1)-5=-2--2-7,-2-¢;
3-a+2:b=3-(2-g+0-2,-3-7,)+2-(4-+2-,-1-2)) =
=(3-2+2-4)-g+(3:0+2:2)-8,+[3:(-3)+2:(-1)]- & =14-g + 4.7, -11-5,.

-2:

Thus, vectors a+b, @—b,3-a+2-b have coordinates 6, 2, —4; -2, =2

2

14, 4, —11 accordingly.
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Let’s find obtained coordinates using the matrix notation. Vectors @ and b (in

given basis) corresponds to the following coordinate columns

2 4
a=| 0|, b=|2
-3 -1

2 4 6 2 4 -2
a+b=| 0 |+| 2 |=]| 2 |; a-b=| 0 |-| 2 |=|-2|;
-3 -1 —4 -3 -1 -2
2 4 14
3-a+2-b=3-] 0 |+2-| 2 |=| 4
-3 -1 -11

Results are the same. W
8.3.5. Orthogonal and Orthonormal Bases

Two vectors are called orthogonal (perpendicular), if the angle between them

is the right angle (value ¢ equals to %).

A system of vectors is called orthogonal, if all forming vectors are pairwise
orthogonal. A system of vectors if called orthonormal, if it is orthogonal and the

length of each vector equals to unit.
Standard basis on line, plane and in space

Bases on line, plane and in space are not uniquely defined. Some of them,
which are more convenient to use, are accepted as standard.

Standard basis on line is unit vector i on the given line (Fig. 8.15, a). Any
vector @, which is collinear to the given line, can be decomposed by the standard

basis on line (€ =1 ), i.e. represented in form @=x-1i .
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Figure 8.15

A standard basis on plane is an ordered pair of unit and perpendicular vectors

7,7 on the given plane (Fig. 8.15, b). Any vector @ on the given plane can be
decomposed by the standard basis on plane (e,=1i , e,=J), i.e. represented in a
forma=x-i+y-J.

A standard basis in space is an ordered triplet of unit and pairwise
perpendicular vectors 7,/ ,k (Fig. 8.15, ¢). The first basis vector i in Fig. 8.15, ¢
is directed perpendicularly to the figure’s plane (towards the reader). Any vector a in
space can be decomposed by standard bases in space (e, =7, &=, ¢,=k), ie.
represented inform G=x-1 +y-j+z-k .

Standard bases on plane and in space are orthonormal right bases.

In standard basis length of vector equals to square root of its component sum:

|c7|=\/? (on line);
|@|=+/x*+ y* (on plane);
|@|=+ x*+y*+2* (in space).
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Direction Cosines

In standard bases on plane and in space it is convenient to describe the
direction of nonzero vector @ by the angles between the vector and basis vectors: o

— the angle between @ and the first basis vector 7 ; B — the angle between @ and the

second basis vector j (Fig. 8.15, b); v — the angle between @ and the third basis

vector k (Fig. 8.15, c). It is sufficient to take into account angles cosines, which are
called direction cosines of vector a (in standard basis).
Coordinates of unit vector e, equally directed with vector @ on plane, are

equal to direction cosines of vector @ :

E

e=—=coso-i +cosP-/,

Q|

1.e. x=cosa, y=cosP. Values of direction cosines satisfy the following condition:

cos’a+cos’B=1.
Coordinates of unit vector e, equally directed with vector @ in space, are

equal to direction cosines of vector a :

| =

g€=—=cosa-i +cosP-j +cosy-k,

Ql

ie. x=coso, y=cosP, z=cosy and cos’a +cos’B+cos’y=1.

Example 8.6. Find lengths and direction cosines of vectors @=3-7 —~/3-7

and b=i-2-7+2-k.
O Vector @=3-7 —+/3-7 is defined relative to standard basis 7,7 on plane.
By coordinates x=3, y=—\/§ of vector a find its length by the formula

8.1): |@|=/3"+(=B)2 =243.

Dividing vector @ by its length we find the unit vector, equally directed with

a3 — B _ 3_

| = N

1—.
@ 2 2 T T

vector a :
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V3.
2 >

According to (8.3), its coordinates are direction cosines coso=

cosf = —%. So, vector @ forms the following angles with basis vectors 7 and J:

_I _2n
o= and 3
Vector b =i —2-7+2-k is defined relative to standard basis 7,7,k in
space.

By coordinates x=1, y=—2, z=2 of vector 5 find its length by the formula

(8.2 |b |=y/1+(=2)*+27 =3,

Dividing vector b by its length we find the unit vector, equally directed with

vector b : L:l-f—%-j_#%-/;
5] 3 37 3
According to (8.4), its coordinates are direction cosines: coso = %; cosP = —%;
-2 m
cosy =13

8.4. SCALAR PRODUCT OF VECTORS

A scalar product of two nonzero vectors is a number, equal to the product of
their lengths and cosine of angle between them. If at least one vector is zero, then the

angle between them is not defined, and product is assumed to be equal to zero. Scalar
product of vectors @ and b is denoted by

(5,5)=|5|-|5‘-coscp, (8.5)
where ¢ is a value of the angle between @ and b (Fig. 8.2 in section 8.1.1).
A scalar product (7,d) =|a@ ‘2 is called scalar square.

A scalar product of two nonzero vectors a and b equals to the product of
vector b length and algebraic value of orthogonal projection of vector @ to axis,
formed by vector b (Fig. 8.16):

(5,5)=|5|-pr0j35. (8.6)
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7] ] a
® L ¢
— -

b projza projsa b
Figure 8.16
This formula remains correct if @ =0 , because proj;0 =0.

In other words, a scalar product of nonzero vectors @ and b equals to the
product of vector @ length and algebraic value of orthogonal projection length of

vector b to axis, formed by vector @
(@,b)= | 5|-projal7.

Example 8.7. Find scalar products (a@,b), (b,@), (@,c), (b,c), (@,d),

(b,d), (¢,d), if it is known, that ‘5|=1, 5|=2, E‘=4, J|=1, angle ¢ between
vectors @ and b equals to % ¢ ™ b, and vector d forms angle with vector @

equal to 6=5%C (Fig. 8.17).

w%(p_
z JL'SI)

Figure 8.17

O By the definitions find (c_z,l;)=|c7|-|b—|-005(p=1-2-cos£=1;

3
(5,5)=|5 ‘-|5|-coscp=2-1-cos%=l. Since vectors » and € are oppositely
directed, then angle 1w between vectors @ and ¢ equals to 2 SO

?:

(5,5)=|5|-|E|-cosw=1-4-cos—23£=—2.
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Angle between oppositely directed vectors » and ¢ equals to m, so

(17,5)=|5|-|E|-cosn=2-4-cosn=—8.

Vector d is orthogonal to vector » (and vector ¢), because value of angle

between them equals to %‘—% = % and cos% =0,s0 (h,d)=(,d)=0.
Angle & between vectors @ and d equals to %, SO

(a,c7)=1-1-cos%“=—§. m

Algebraic Properties of Scalar Product

For any vectors @, b , ¢ and any real number A:

1. (@,b)=(b,a);

2. (@+b,0)=(@,0)+(b,0);

3. (A-ab)y=r-(@,b);

4. (a@,a)=0, and from the equality (@,a)=0 follows that 7=5 .

Geometric Properties of Scalar Product

1. Length of vectord is calculated by formula |a@|=/(@,@).

2. Value of angle ¢ between two nonzero vectors is calculated by formula:
@b @b

@l |b| J@a)-J@.p)

3. Algebraic value of orthogonal projection length of vector a to axis, formed

cosQ =

— a,b a,b
by vector b #0: proj; a = (a,_ ) = (ai 2 .
o] 6.5
4. Orthogonal projection of vector @ to axis, formed by vector b #0:
— _ (@,b) - - . _ — _
proj;a = W-b . If axis is formed by unit vector &, then proj,a=(a,e)-e.
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Scalar Product in Orthonormal Basis

In orthonormal basis a scalar product of vectors equals to the sum of the
products of its corresponding elements:
1) if vectors @ and b relative to orthonormal basis on plane have coordinates

x,,y, and x,,y, accordingly, then the scalar product of these vectors is calculated by

the formula

(E,l;) =X, X+ Y.V, (8.7)

2) if vectors @ and b relative to orthonormal basis in space have coordinates

x,,y, .z, and x,,y,,2z, accordingly, then the scalar product of these vectors is

calculated by the formula

(aab_):xa.xb-i_ya'yb—'-zaozb' (88)

Coordinates of vector @ in orthonormal bases equal to scalar products of this

vector and according basis vectors:

x,=@7), y,=@j), z,=@k)
Example 8.8. Given vectors a=i-2-j+2-k

, b=2-T+3-7+2k,
¢ =7 -k, find scalar products (@,b), (@,c), (b,T), (@,7), (@,)), (@,k), lengths
, angles ¢_-, ¢, between vectors @ and b, da and ©

b

c

of vectors | a

2 >

accordingly, and projection %Ec_l and algebraic value proj.a of the projection

length.

O By the geometric Properties 1 — 4 and (8.8), obtain:
@,b)=(1-7-2-7+2k,2:T+3-7+2-k)=1-2+(-2)-3+2-2=0;

T41-7-1-k)=1-0+(=2)-1+2-(-1)=-4;

o

(@,c)=01-7T-2-7+2-k,
(B,0)=(2-T+3-7+2-k,0.T+1-7-1-k)=2-0+3-1+2-(-1) =1
@,7)=(1-T-2-7+2-k,1-T+0-7+0-k)=1-14+(=2)-0+2-0=1;
@ 7)=0-7T-2-7+2-k,0-7T+1-7+0-k)=1-0+(-2)-1+2-0=-2;
(@,k)=(1-7T-2-7+2k,0.7+0-7+1-k)=1-0+(-2)-0+2-1=2;
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|@|=(@,a@) =4/ 1 +(=2)* + 22 =3; |1?|=J(5,/7)=J22+32+22 =J17;

12|=\(@.0) = 0* + 12+ (-1)* =+2;

Fh _
COSQP_r = |(c_?|’| [_)_) | =0 = o =§ (vectors @ and b are orthogonal);

@z) -4 22 ( 2\/5]
= =  (pgz; =arccos —T ;

N ET IRV R

Droi- a (@c) _—4 L. — -_(a5°) -4 - - - -
— = = =—2 2, 7'0_ = . = . _k :_2 +2k..
Holed |c| N2 Prajza (c,0) ¢ ) (j ) J

8.5. OUTER PRODUCT OF VECTORS

A vector € is called an outer product of noncollinear vectors @ and b , if:

1) its length 1s equal to the product of vectors @ and b lengths and sine of

angle between them: |Z|=|a|-|b|-sin¢ (Fig. 8.18);
2) vector T is orthogonal to vectors @ and b ;

3) vectors @,b ,¢ (in the given order) are right triplet.

Figure 8.18

An outer product of collinear vectors (in particular, if at least one of them is
zero vector) equals to zero vector. The outer product is denoted as ¢ =[a,b] (or
axb).
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Algebraic Properties of Quter Product

For any vectors @, b , € and any real number A :
1. [@,b]=-[b,al;
2. [a+b,c]=[a,c]+[b,c];
3. [r-@,b]=A\-[a,b].
Geometric Properties of Outer Product

1. The absolute value of vectors’ outer product numerically equals to the area

of a parallelogram, constructed on these vectors (Fig. 8.18, b).
2. An outer product equals to zero vector if and only if the vectors are

collinear,ie. [@,b]=0 < @|b,in particular [7,d]=0.
Outer Product of Vectors in Orthonormal Basis

Consider right orthonormal (standard) basis in space 7,7,k (sect. 8.3.5).

Outer products of basis vectors are found by the definition:

Outer product calculation formula. If vectors @ and 5 in right orthonormal

basis 7,7,k have coordinates x,,y,,z, and x,,y,,z, accordingly, then the outer

product of these vectors is calculated by the formula

Tk
- _ z | —|x z| = |x
@51=7-"" -7 ler T |y oy oz (89)
z X X
Vo 2y ) ) X, ¥, z,
Example 8.9. Parallelogram ABCD is constructed on vectors

AB=T+2-7+2-k, AD=3-T-2-7+k (Fig. 8.19). Find:
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Figure 8.19

a) outer products [E, AD] and [AC, E];

b) area of parallelogram ABCD;

c) direction cosines of vector 7, perpendicular to the plane, which contains
ABCD, and that form the left triplet E,E N7
O a) Outer product [ﬁ, E] is calculated by the formula (8.9):

[4B, AD]=

N~

_7.

2 1 31 13 =2

— N

2 2 (1 21 |1 2 - - -
-J- + =6-1+5-j-8-k.
-2

Outer product [E, @] is determined by the algebraic properties:

[AC, BD]=[AB + AD, AD — AB| =[AB, AD] - [AB, AB] +[AD, AD] - [AD, AB] =

7 o —[4B, 4D]

—[AB, AD]+[AB, AD]=2-[AB, AD].

Consequently, [AC, BD] =2-(6-7+5-7—8-E>=12-7+10-7—16-E.
b) Area of parallelogram ABCD is found as an absolute value of product
[4B, AD]:

S, =|[4B, 4D]|=|6-T +5-7 -8k |= /6" + 5 + (-8) =545.

c) Vector, that is oppositely directed with vector [E, E], satisfies

enumerated conditions, thus

m=-[4B,AD]=—(6-T+5-7-8-k)=-6-T-5-7+8-k.
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Dividing this vector by its length |ﬁ|=|[@, E]lz 545 , we will obtain the unit

7 —6-1-57+8k

. 6 T 5 = 8
vector: = =— -l — -]+
7] 505 NN AN

-k . According to (8.4),

: . o . -6 -1 8
its coordinates are direction cosines: cosa=—p=, cosp=—=, cosy=—"~-. W
5V J5 55

8.6. COMPOSITIONAL PRODUCT OF VECTORS

A compositional product of vectors @,b . is a number (@,[b,C]), equal

to the scalar product of vector @ and the outer product of vectors b u C.

A compositional product is denoted by (@, 5, 7).
Geometric Properties of Compositional Product

1. The absolute value of compositional product of noncoplanar vectors a,
b, T equals to the volume V..;- of a parallelepiped, constructed on these
vectors. A product (@,b,T) is positive, if vector triplet @,b,c is right, and
negative, if vector triplet @,5 , is left.

2. A compositional product (@,5,¢) equals to zero if and only if vectors

a,b ,c are coplanar,i.e.:

(@,h,c)=0 < vectors @,b,C are coplanar.
Algebraic Properties of Compositional Product

1. A swap of two multipliers in compositional product changes the sign to the

opposite one:
(@,b,c)=-(b,a,c), (a,b,c)=-(,b,a), (a,b,c)=—(a,c.b),

2. A compositional product is linear by any multiplier.
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Compositional Product of Vectors in Orthonormal Basis

Compositional product calculation formula. If vectors @,b,C in right
orthonormal basis 7,7,k have coordinates X,y .,z X,,¥,.Z,; X.,V..Z,

accordingly, then the compositional product of these vectors can be calculated by the

formula
‘xa ya Za
(@b,c)=\x, vy, z,|. (8.10)
xc‘ yc ZC

Example 8.10. Parallelepiped ABCDABC,D, 1is constructed on vectors

AB=T+2-7+2-k; AD=3-T-2-7+k; A4,=2-T -1-7 +3-k (Fig. 8.20). Find:

ey

G

!
I
!
I

Figure 8.20

a) compositional product (4B, 4D, A4,);

b) orientation of triplet AB,AD , A4, ;
¢) volume of parallelepiped ABCDA,B,C,D;;
d) volume of triangular pyramid ABDA,;

e) height A of the parallelepiped (distance between planes of bases ABCD
and 4,B,C,D,).

O a) Compositional product(A4B, AD, AA,) is found by formula (8.10):
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1 2 2
(4B, AD, A4)=[3 -2 1|=-17.
2 -1 3

b) Since the product is negative, then the triplet AB,AD, A4, is left (by the

first geometric property of compositional product).

c¢) Volume V, of parallelepiped ABCDA B,C,D; equals to the absolute value of

the compositional product (by the first geometric property of compositional product):

V#=|(AB,AD,AA‘)‘=|—17|=17.
d) Volume V' of triangular pyramid ABDA, equals to one sixth of

parallelepiped’s volume V, . Indeed, their heights are equal, and area S, of pyramid

base equals to half of parallelogram ABCD  area S,. So

V=%-Sbm -hz%o%-S# h =%-V# and V,=((4B, AD, AA1)|=17 and then
1y 17
V= ¢ V, G
¢) Height 4 of the parallelepiped is obtained by formula 4= %, where S, is
#

the area of parallelogram ABCD . Since V, =17 and S, = 55 (example 8.11), then
17
h=—~. 1
545
8.7. METRIC APPLICATIONS OF VECTOR PRODUCTS

It is assumed that coordinates of vectors @ ,b ,C, which are given in formulas,

are found relative to standard basis 7 , j ,k in space:

il

a=x,i+y,-j+z,-

>

b

Xg L+ Y, J+2,k,

=

c=x-1+y,-j+z,-

Remember, that in standard basis scalar, outer and compositional products of

vectors are calculated by formulas (8.8)—(8.10):
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[
[@bl=|x, v, =zl
X Vo %
X Yo Zg
@b,0)=|x, v, 3.
X Ve 2.

1. A vector a =0 if and only if
@,a)=0 < xi+y.+z.=0 & x,=y =z =0.
2. Nonzero vectors @ and b are orthogonal if and only if
(a,b)=0 < X, Xy +y, Vv, +z,-2,=0.

3. Vectors @ and b are collinear if and only if

Vectors @, b, T are coplanar if and only if
‘xa ya Za
(@,h,c)=0 < |x, y, z|=0.
x yC ZC

c

4.

The length of a vector @ # 0 is calculated by formula
|a|=\@.a) =S +yiezl

The angle @ between two nonzero vectors @ and b is calculated by

5.

6.

formula
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(a, b) X, X, +Y, YV, +Z,°2,

,/(aa J(b b) \/x +y 4z \/7+yb+zb'

7.  The algebraic value of the orthogonal projection of vector @ on axis,

Cos O

formed by vector b =7, is calculated by formula

proj—ﬁ—(a b) Xy Xyt Yo Vot 2%
. =
b NEAS

8.  The orthogonal projection of vector @ on axis, formed by vector b =5

(a b) = Xg Xpt YV, W t+2,-2,
(b.,b) X+ Yy + 2,

proj;a -(xb°7+yb-7+zb-1?).

9.  Direction cosines of vector @ are found by formulas

a,i a7
cosa =T _ %, : cosp= L) _ Yo :
@] Jxeyiez la| P+ y+22
cosy=(a’k)= 2o
@] JxPeyiez?

10. A unit vector €, equally directed with vector @, is found by formula

B

e=—=1-coso+ j-cosP+k -cosy.

Ql

11. Area S, ; of a parallelogram, constructed on vectors a and b, is
calculated by formula: S, - =|[E, b ]|. Area S ;. of triangle ABC equals to one half
of area S#EE of a parallelogram, constructed on vectors AB and E, 1.€

Supc =% S,

2 #A4B, AC
12. Volume Vizsz Of a parallelepiped, constructed on vectors a,b,c, is
calculated by formula Vs = =|(5, b, E)|. Volume V, . of triangular

pyramid ABCD equals to one sixth of volume v, of a parallelepiped,

&l
&l
§

constructed on vectors AB, AC, AD,ie. V 1 -V,

ABCD — 6

&l
&l
gl
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13. A triplet of noncoplanar vectors @,b,¢ is right (left) if and only if

(@,b,c)>0 ((a,h,c)<0).

14. The height 4 of a parallelogram, constructed on vectors a,b, is

calculated by formula (Fig. 8.18, 0)

h

S5 |@h]]
al Jaa)
15. The height 4 of a parallelepiped, constructed on vectors @,b T, is
calculated by formula
Viase @50
Sgs |[5=5]| '

16. The angle \ between vector @ and a plane, containing vectors » and ¢,

h

completes the angle ¢ between vector @ and vector 7=[b,¢] (which is
perpendicular to the plane (Fig. 8.21, a)) to the right angle, and 1s calculated by
formula

(@5.2)|

jal-|i6.21]

17. The angle & between plane, containing vectors @,band ¢,d

sin\y=|005(p|=

accordingly, is calculated as the angle between vectors i =|[a, b], n=[c,d], that are

perpendicular to the given planes (Fig. 8.21, ) by formula

Figure 8.21
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Given properties 1-3, 5-11, 14 are also applied to vectors on plane, assuming

their applicates equal to zero.

Example 8.11. Triangle OAB is constructed on vectors OA=4-7 +3- and
OB=12-T-5-7 (Fig. 8.22). Find:

a) lengths of sides of the triangle;

b) wvalue of angle AOB;

c) area of the triangle;

d) coordinates of vector BH (in standard basis), where BH is the height of

the triangle.
B
O H A
Figure 8.22

O a) Lengths of sides O4 and OB are found by the Property 5:

| 04 |=(04,04) =4? +3? =5 |@|=\/(@,@)=\/122+(—5)2 ~13.

To find the length of side AB, obtain coordinates of vector

AB=0B-0A=12-7-5-7—(4-7 +3-7)=8-7 -8- 7, and then its length:

|A—B|=\/(E,@)=\/82+(—8)2 =82

b) Value ¢ of angle AOB find by Property 6:

Jo4,04)-J0B,0B) 513 65
= 33
Consequently, ¢ = arccos o5

c) Area S of triangle OAB equals to one half of area of a parallelogram,

constructed on vectors O4 and OB: S = %S#m,@ (Property 11). To find area of the
132



parallelogram, add zero applicate to vectors OA and OB, ie. OA=4-7 +3-7+0-k ;

OB=12-T-5- 7 +0-k , and calculate their outer product:

7k
I 13 o 4ol 14 3 _ _ )
[OA;OB]: 4 3 Ol=1 -J- +k- =Ol—0]+(—56)k
-5 0 12 0 12 -5
12 -5 0
Then 505 =|[04,0B1|=|0-T+0- 7 +(=56)-F | =/0? +0* +(-56)* = 56.

So, triangle area S = % -56=28.

d) Find vector BH = OH — OB . Projection OH of vectorOB on axis, formed

by vector OA , we obtain by Property 8:

From this _H=&-7+9—2-j_’—(12-7—5-]_')=—@-7+M j . Consequently, its

coordinates are — 12658 , 22254 Find the length of this vector, i.¢. triangle height:

—_— 2

|BH | =\/ (—12658 ) +(22254 ) = 56 Note that triangle area S =28, so the height can
be calculated by formula BH = 205 2 528 = ? The results are the same. B

Example 8.12. Triangular pyramid OABC is constructed on vectors
OA=1-T+3-7-1-k,0B=2-T+1.7-2-k,0C=3-T-2-7+4-k (Fig. 8.23).

C

A

Figure 8.23
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Find:

a) lengths of edgesOA, OB, OC;
b) value ¢ of angle AOC ;

c) area S,,- of triangle OAC;

d) volume of pyramid OABC ;
e) height A, of pyramid, dropped from vertex B

f) height 4, of triangle OAC , dropped from vertex 4 ;

g) angle y between edge OA and the plane of side OBC ;

h) value & between planes of sidesOAC and OBC ;

i) direction cosines of vector OB;

j) algebraic value of orthogonal projection of vector OA on the direction of
Vectorﬁ;

k) orthogonal projection of vector OA4 on line, which is perpendicular to side
OBC;

1) unit vector  (ort), equally directed with vector AB;
m) vector @ with the length equal to the length of vector AB and equally

directed with vector AC .
O a) Lengths of edges OA4,0B and OC are calculated by Property 5:

|m|=\/(m,ﬁ)=\/12+32+(—1)2 _J11;

| OB |=(0B,0B) =\ 2* + 1> + (-2)* =3;

| OC |=(0C,0C) =3 +(-2)* + 47 =29

b) Value ¢ of angle AOC is found as the angle between vectors OA and OC
by Property 6:
_ (04,0C) 1:3+3-(-2)+(-1)-4 7

T oa[foc]T T i 319

: 7
e ¢= n—arccosJ_ :
319
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c¢) First we calculate area of parallelogram, constructed on vectors 04 and OC

by Propertyl1. To do this we find outer product

i J Kk
[04,0C1=|1 3 -1|=10.7-7-7-11-k,
3 2 4

and then its absolute value: S

=|[04,0C1|= 10> + (=7)" + (-11)* =270

#0A,0C

Required area of the triangle equals to one half of the previously obtained area:

1 \/270
Soac —5 S #04,0C — )
d) By Property 12 find the volume V-5  of the parallelepiped,
constructed on vectors O4, OB, OC :
1 3 -1
(O4,0B,0C)=2 1 =2|=-35 =
3 =2 4
= Voo =|(04,0B,0C)|=|-35|=35.
Required pyramid volume is six times smaller: V.. = % Voo = %

¢) Height A, of pyramid is found by Property 15:

V.on.05.00 35
hB = = .
S—— 4270

#OA, OC

f) Height A, of triangle OAC , dropped from vertex A is found by Property 14:

S#OA oc N 270

|OC‘ J29

h,=

g) At first we obtain vector 77, which is perpendicular to side OBC :

ik
7=[0B,0C]=|2 1 -2|=0.7T-14-7-7-k.
3 -2 4
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Then we calculate angle  between vector OA and the plane of side OBC by the
Property 16:

|(@@%)\ |04, n)‘

|04|-|loB.0C1|  |04]-|7|

siny =

:|1.0+3-(—14)+(—1)-(—7)|: 35 =J§
- f(c1a) (=77 MIT745

J5

1.€. Y = arcsin ——.
v N

h) Find vector 7, which is perpendicular to the plane of side QAC :

T 7k
fi=[04,0C]=|1 3 -1|=10-7-7-7-11-k.
3 -2 4
Vector 77, which is perpendicular to side OBC , was found in "g". Required angle &

is calculated by Property 17:

|([04,0C1.10B,0C)| |(
cos d =
04, ocl| |[OB 0C]|

|1%
|| |7|

_[10:04(=7)-(-14)+ (-11)-(-7)] _ 5

J107+(=7) 4 (=11 745 36

e 8= arccosi i

36

i) Direction cosines of vector OB are calculated by Property 9:

cosa=(OB,z)=2-1+1-O+(—2)-O:%

08| 211

(0B.7)
08|

(OB,k) -2

cosf = ‘—B’ 3

l' COSY =
3’ T=
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2 2 2
Note, that cos” o+ cos’ + cos’y = (—%—) + (%) + (—%) =1.

j) Algebraic value projﬁbg of projection length is found by Property 7

. — (04,0B) 1-2+3-1+(-1)-(-2)
projss 04 = |@| = 3

_7
5

k) Required orthogonal projection proj. OA is obtained by Property 8

(a=0A4, b =n), using vector 7, which was found in "g":

— — (0A,7) _ 1:043:-(-19)+(-D-(-7)
P O = e = (Clay + )

(0-7+(-14) T +(-7)-k )=

=2-7+k.

1) Obtain coordinates of vector AB and its length:

AB=0B-0A4=(2-T+1.7-2-k)-(1-T+3-T-1-k)=1-T+4.7-1-k;

|4B|= 1+ 424 (-1) =342,

and then the required vector ¢ =42 L-7+i-7——1—-l;.

m) Find coordinates of vector AC and its length:

AC=0C—OA=(3.7—2-7+4-/?)_(1-7+3-7—1-/€)=2-7—5-7+5-/?;

|4C | =42 +(=5) + 5 =36,

and then the required vector
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EXERCISES

1. Consider vectors @=2-7 —n-j; b=m-7 +3-7 . Decompose vector 7 by

vectors @ and b . Find:

a) coordinates of vector ¢ =2-@—3-b in standard basis;

b) length and direction cosines of vector ¢ .

c b=2-T+m-j+k; T=4-T+

=

2. Consider vectors a=n-i —j+m-

+n-j —3-k . Decompose vector i by vectors@,b ,¢ . Find:

a) coordinates of vector d =@ +2-b —3-T in standard basis;
b) length and direction cosines of vector d .

3. Consider vectors a=2-i —n-j; b=m-i +3-;. Decompose vector i

by vectors @ and 5 . Find:

a) products (@,b), (@,a), (b,b);

b) orthogonal projections projza, proj.a of vector a;
¢) algebraic values proj -a and proj _b of orthogonal projection lengths;
d) angle @ between vectors @ and b ;

¢) area of parallelogram S which is built on vectors @ and & .

#a,b >

4. Consider vectors a=n-i—j+m-k; b=2-T+m-j+k, CT=4-7+

+n-J -3k . Decompose vector i by vectors @,b ,¢ . Find:
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a) products (@,b), [@,b], (a,b,T), determine orientation of the triplet @,b ,T;

b) orthogonal projections projza, proj.a of vector a;

¢) algebraic values proj ;a and proj _b of orthogonal projection lengths;
d) angle ¢ between vectors @ and b ;

e) angle y between vector &@ and plane, which contains vectors b and T;

f) area of parallelogram S which is built on vectors @ and b ;

#ab >

g) volume of parallelepiped V,_ 7 ., which is built on vectors @b ,c.



CHAPTER 9. COORDINATE SYSTEMS

9.1. CARTESIAN COORDINATE SYSTEMS
9.1.1. Cartesian Coordinates of Vectors and Points

Let O be a fixed point in space. An set of point O and a basis is called an
affine coordinate system and point O is called its origin. Lines passing through the
origin in the direction of basis vectors are called coordinate axes.

For any point 4 in a given affine coordinate system we can consider vector
OA, its tail being the origin and head — point 4 (Fig. 9.1-9.3). This vector is called
a position or radius vector of point 4.

An affine coordinate system is called Cartesian (rectangular) if its basis is
orthonormal (see Section 8.3.5).

The coordinates of a vector in a Cartesian coordinate system are the
coefficients of its decomposition by standard basis (see Section 8.3.5).

The coordinates of a point A in a Cartesian coordinate system are the
coordinates of its position vector OA in standard basis. In space these are
coefficients x,y,z of decomposition OA=x-T+ y-j+z-k, on plane —
coefficients x,y of decomposition @:x-7+y-7, on line — coefficient x of
decomposition OA=x-7. Denotations A(x,y,z), A(x,y), A(x) are used,

respectively. Cartesian coordinates of a point (or its position vector) can be
represented by a coordinate column:

X

X

y | 1n space, [ ] on plane.
Y

VA

Choosing standards bases (see Section 8.3.5), we obtain:
Oi — Cartesian coordinate system on a line — is represented by point O and

unit vector i on a line. Points O and A4 (Fig. 9.1) on axis Ox are denoted by O(O)
and A(1);
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Figure 9.1

01 j — Cartesian coordinate system on a plane — is represented by point O
and two mutually perpendicular unit vectors 7 and j on a plane (vector 7 is the
first basis vector and J is the second one; 7, j is the right pair of vectors). Axes
Ox (abscissa) and Oy (ordinate) divide the plane into 4 parts, called quadrants (Fig.

9.2), e.g. point A(1,1) belongs to the / quadrant;

1y
2
L [
- 1
. 1:A(L)
a
-2 -1 O 1 2 x
I -17 v
Figure 9.2

Coordinates of vectors and points in a Cartesian coordinate system are called

Cartesian coordinates.

O7 Jk — Cartesian coordinate system in space — is represented by point O
and three pairwise perpendicular unit vectors 7,7,k (vector 7 is the first basis
vector, 7 is the second and k is the third one; 7,7,k is the right triplet of vectors).
Axes are denoted by Ox — abscissa, Oy — ordinate, Oz — applicate.

Coordinate planes Oxy, Oxz, Oyz, passing through pairs of axes, divide space
into 8 octants (Fig. 9.3), e.g. point A(1,2,2) belongs to the / octant.

Cartesian coordinate systems can also be denoted by the origin and the axes,

e.g. Ox, Oxy, Oxyz.
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Figure 9.3

To find the coordinates of a vector AB with the tail in the point A(xA,yA,ZA)
and the head in the point B(x,,y;,z,), we should subtract the coordinates of its tail

from the corresponding coordinates of its head.

AB=(xy—x,) T +(yy—v.)-T+(z5—2,) k.

This rule also holds for Cartesian coordinate systems on a plane and on a line.

B

Coordinates of a point M that divides a segment AB in the ratio of —% =—
o

(>0, B>0), are found by the coordinates of its endpoints A(xA,yA,ZA) and

B(xy,y5.25) (see Section 2.1.1):

M[OL'XA+B'XB;OL'yA+B'yB;OL'ZA+B'ZB]‘ (9.1)
o+ o+ o+

In particular:

o poth(xA"'xB.J/A"'J/B.ZA"'ZB

Ty ] 1s the midpoint of a segment A5 ;
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Xyt Xpgt+Xe V,+ Vgt Ve Z,tZp+2Z-
3 ’ 3 ’

o point M ( ] 1s the intersection point of

triangle ABC ’s medians .
Similar formulas are true for coordinates of points on a plane and on a line.

In a Cartesian coordinate system the distance 4B between points A(x,, y,,z,)

and B(x;, v, z;) is obtained by the formula

AB= (x5 =2,V + (3= y.) +(z5-2.) 9.2)

For the coordinate plane and the coordinate line, respectively:

ABz\/(xB—xA)2+(yB—yA)2; AB=|xB—xA|.

If Cartesian coordinates of vertexes A(x,,y,), B(x; v;), C(xq,y.) of

triangle ABC on a plane are given, its area is calculated by the formula

S e = ‘ S e |» where
| X, yaol
S;IBCZE' Xp Yy 1] (9.3)
Xe Yool

If Cartesian coordinates of vertexes A(x,,v,.z,), B(xy, s 25),
C(xc, Yerze)» D(xp, ¥y, zp) of triangular pyramid ABCD are given, its volume is

, where

calculated by the formula V., = | Vi

Xy Va4 Z4
1 | X Vg Zj

A e .
VABCD_g
Xe Vo Zc

Xp VYp Zp

(9.4)

S U GH S G—

Example 9.1. Given Cartesian coordinates of vertexes A(L1), B(4.5),

C(13,6) of the triangle ABC (see Figure 9.4), find
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a) the length of the median AM ;
b) the length of the angle bisector AL ;
c) the height /2 dropped from the vertex A4.

A

B L M C

Figure 9.4

O a) By formula (9.1) calculate the coordinates of the point A/ — the midpoint of the
side BC: M (2, 36) ie. M(Z,4). Using a special case of formula (9.2) for a

2 > 2 2> 2

plane, compute the length of the median:

_ (17 _qY (u_)z_ 306
AM—\/(z 1)+2 1) =306

b) Calculate the coordinates of the point L that divides the side BC in the ratio

BL:LC = AB: AC (the angle bisector theorem). Since AB = \/(4 ~1)" +(5-1)" =5

and AC =(13-1)+(6-1)" =13, by formula (9.1), taking into account that

BL:LC=5:13 = o=13, B=5, we find L(13'4+5'13,13'5+5'6), ie.

13+5 13+5
L(% ?—5) . Compute the length of the angle bisector:
_ 13 Y (95 _ )2_11-\/130
AL‘\/(z 1)+18 ) ="=g
1 1 1
o 33
¢) By formula (9.3) find: Sime =774 5 1===
13 6 1
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Hence, the area of the triangle ABC S ;- =

Sipe |2 33 then 1, =2 2aee 33

since BC = \/(13—4)2 +(6—5)2 =82 =
Example 9.2. Given Cartesian coordinates of vertexes A4(1,1,3), B(3,5,4),
C(-1,3,2), D(5,3,~1) of the triangular pyramid ABCD , find:

a) the length of the segment DM connecting the vertex D of the pyramid and
the point M of intersection of medians of the face 4BC;
b) the volume V.., of the pyramid.

O a) Find the coordinates of the point A/ (the intersection of medians of the triangle

ABC') by using a special case of formula (9.1):

>

M(1+3;(_D'1*;”;3*;‘*2),1@.M(1,3,3).

By formula (9.2) calculate

DM =J(1-5) +(3-3) +(3+1) =442,

b) Find the volume of the pyramid ABCD . By formula (9.4), subtracting the
first row from the others and expanding the determinant across the last row (see

Section 2.2), we obtain

1 3 1 1 1 3 1
113 5 4 1| 112 4 1 0f 1 2 4
VI =— == =—(-1)"1:]=2 2 -1|=
BD6l-1 3 2 1] 6/-2 2 -1 0 6()
4 2 -4
5 3 -1 1 4 2 -4 0

:—%-(—16—16—4—8—32+4)=12.

Hence, Vaep =|Visep [=12. 8
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9.1.2. Cartesian Coordinate Transformations on Plane and in Space

Let’s give formulas connecting coordinates of a point during the transition from
one Cartesian coordinate system to another one. Consider three types of
transformations:

a) translation,

b) rotation;

c) reflection across abscissa (changing direction of the ordinate axis to the
opposite one).

Coordinates x,y of a point in the old coordinate system O7 j and coordinates

x', 3 in the new coordinate system O'7’ ' are related to one another by the following

formulas:

a) After the translation of a coordinate system (Fig. 9.5, a) by a vector

{x=xs+x',
y=y,+y.

b) After the rotation of a coordinate system by an angle ¢ (Fig. 9.5, b):

5=00'=x-T+y,-J:

x=x"-cosp—y -sing,
y=x-sinp+ )y -cosQ.

c) After the reflection across abscissa (changing direction of the ordinate axis

to the opposite one) (see Figure 9.5, ¢:

{ x=x,
y=-y.
Any transformation of a Cartesian coordinate system on a plane can be

reduced to a composition of transformations, each of them being a translation,

rotation or reflection across an axis.
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Figure 9.5

Suppose we have two Cartesian coordinate systems on a plane: Qi j and
O'7"J' . Formulas, connecting old and new coordinates of a point, take the form:

e for coordinates systems with the same orientation (i.e. transitions between

right and right or left and left coordinate systems) (Fig. 9.6, a):

x=x,+x"-cosp—y'-sinQ, ©5)
y=y, +x-singo+) -cos@, '
¢ for coordinates systems with different orientations (Fig. 9.6, b):
X=Xx_+x-cosqo+) -sing,
{ +x'-00sg+ )/ -sing ©.6)
y=y,+x -sing-y"-coso.

Figure 9.6
For the above transformations of point coordinates, new coordinates are
expressed via the old ones by the following formulas:
X=x-x, x'=x-cos@+ y-sing, x'=x,
a) , b , . C
y=y-J; y =—X-sinQ@+)y-CosQ,
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For transformation (9.5) similar formulas take the form:

(9.7)

xX'=(x-x)-cosQ+(y—y,)-sing,
Y =—(x—x)-sin@+(y—y,) cose.

I

5 from formula (9.6) we obtain the transformation

x=),
y=x,

that changes the names of axes (reflection across the line containing the bisector of

For x,=0,y,=0 and ¢ =

the first coordinate angle).
Transformations of Cartesian Coordinates in Space

Consider three types of transformations of a Cartesian coordinate system:
a) translation;
b) rotation around an axis,

c) reflection on a plane (changing direction of one axis to the opposite one).

Coordinates x,y,z of a point in the old coordinate system O7 jk and

coordinates x',)’,z in the new coordinate system O'7 j'k’ are related to one

another by the following formulas

a) After the translation of a coordinate system by an origin translation vector

§5=00'=x,-T+y,-j+z,k
x=x+x,
!
y=y,tJy,
z2=2z,+72".

b) After the rotation of the coordinate system by an angle ¢ around the

applicate axis:
x=x"-cos@—}' -sing@,
y=x"-sin@+ ) -cosQ,
z=2z.
It’s obvious that a coordinate system on the plane Oxy is rotated by an angle ¢

during this transformation.
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c) After the reflection on the plane Oxy (changing direction of the applicate

axis to the opposite one):

x=x',
- (4

y_y >

z=-Z2".

Reflections on other coordinate planes are defined similarly (changing
direction of the abscissa or ordinate axis to the opposite one).

Any transformation of a Cartesian coordinate system in space can be reduced
to a composition of transformations, each of them being a translation, rotation
around an axis or reflection on a coordinate plane.

In particular, for a composition of rotation by an angle ¢ around the Oz axis

and translation by a vector §=00'=x,-i +y,- ] +z,-k coordinate transformation
formulas take the form:
x=x,+x"-cosp—y'-sing,
y=y,+x-sing+) -coso, (9.8)
z=z,+7.
Formulas for expressing new coordinates of points via the old ones take the

form:

X'=(x-x)-cosQ+(y—y,)sing,
Y =—(x-x,)-sin@+(y—y,) coso, 9.9)
Z'=z-z, .

Similar formulas can be written for other compositions of transformations, e.g.

to obtain formulas of coordinate transformations for a composition of rotation by an

angle ¢ around the abscissa axis and translation by a vector
§=m:xs T +y, ] +z, .k, we should write formulas (9.8) or (9.9), making a

cyclic interchange of letters x to y, y to z, z to x:

x=x+x, X=x-x,
y=y,+) -cos@—z-singp, or <y =(y-y)-cose+(z-2z)-sing, (9.10)
z=z + ) -sinQ+z'-cos@ Z==(y—y,)sinQ+(z—1z,) cosQ.
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Example 9.3. The point 4 in old coordinate system O7 j has coordinates

x=3, y=4. New Cartesian coordinate system O'7’J" is obtained from the old one
by transition by the vector §=2-7 + and rotation by the angle (p=§. Find

coordinates of the point 4(x',") in new coordinate system.

O Since x, =2, y, =1, by formulas (9.7) we obtain:

xr=(3—2).cos%+(4—l) s1n73c %+3\2/§=1+;\/§ :
yr=_(3—2).sin§+(4—1) 0053 \é_ %=3—2\/§ =

Example 9.4. The point A4 in old coordinate system O7 jk has coordinates

x=3, y=4, z=5. New Cartesian coordinate system O'7 j'k’ is obtained from the
old one by transition by the vector §=2-7 +3- 7 +k and rotation by the angle ¢ = %

around the abscissa. Find coordinates of the point A(x’, y',z') in new coordinate

system.
O Since x, =2, y, =3, z, =1, by formulas (9.10) obtain:
X'=3-2=1;
P (A—2). cack 4 (5 n_ 1.4 _1+43
y'=(4-3) cos3+(5 1)- sm3—2+ =T
(4-3)-sinZ 4 (5— 3,4 4-43 g
(4-3) s1n3+(5 1)- cos3 Sty =T

9.2. POLAR COORDINATE SYSTEM

A polar coordinate system on plane is an aggregate of point O, called the pole,
and ray Ox, called the polar axis. Also a scale interval is given to measure distances
from points on a plane to the pole. As a rule, vector i on a polar axis, applied to
point O, is chosen and its length is taken as range of the scale interval, while its

direction specifies positive direction on the polar axis (Fig. 9.7, a).
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Figure 9.7

The position of point M in a polar coordinate system is determined by the

, and the angle ¢ (polar

distance 7 (radius) from point M to the pole, i.e. 7= ‘ OM

angle, or azimuth) between the polar axis and vector OM . Radius and polar angle

make polar coordinates of point M , written as M (r, ¢). Polar angle is expressed in

radians and is measured from the polar axis:

e 1n positive direction (counterclockwise) if the angle value is positive;

e 1nnegative direction (clockwise) is the angle value is negative.

Radius 1s defined for any point on a plane and takes on non-negative values
r=0. Polar angle ¢ is defined for any point on a plane, except for the pole O, and
takes on values —7 < ¢ <=, called principal values of the polar angle.

A polar coordinates system Or @ can be associated with a Cartesian coordinate
system Q7 j ,origin O of which coincides with the pole, and the abscissa axis (more

exactly, positive abscissa semi-axis) — with the polar axis. The ordinate axis is added
perpendicular to the abscissa axis so that a Cartesian coordinate system is obtained
(Fig. 9.7, b). Lengths of basis vectors are determined by the scale interval on the
polar axis.

Vice versa, if a right-handed Cartesian system is given on plane, we can obtain
a polar coordinate system (associated with the given Cartesian one) by assuming
positive abscissa semi-axis as the polar axis.

Let’s give formulas for converting polar coordinates »,¢ of point A , not the

same as point O, to Cartesian coordinates x,y . By Figure 9.7, b we obtain:

{x=r-005(p, ©11)

y=r-sinQ.
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These formulas allow us to find Cartesian coordinates by given polar coordinates.

The reverse conversion is performed by the formulas:

r=axt+ )yt

(9.12)

Two last equalities give the polar angle with accuracy up to summands 27nn,

Y

where neZ. For x#0 1t follows that tan ¢ ==. The principal value of the polar
X

angle ¢ (- <@ <7)1is found by the formulas (see Figure 9.8):

Y

arctan =, x>0,
X
Tt+arcta:n%, x<0,y20,
¢ =1 —n+a:rctan%, x<0,y<0,
> x=0,y>0,
_I —
L ok X 0,y<0.
II y I
- Y o= Y
0} n+a:rctanx (p—arctanx
__ Yl o= Y
(¢ =—m + arctan P ¢ = arctan P
I v
Figure 9.8

The principal value of the polar angle can be chosen differently, i.e. 0< @< 2x.
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Example 9.5. In the polar coordinate system Or@:

a) sketch coordinate lines r=1, r=2, r=3, (p=%, (p:%, (p:%TTC;
b) plot points M,, M, with polar coordinates # =3, @, = %Tn’ rn=3,
¢, =— zTTC . Find principal values of these points” polar angles;

c¢) find Cartesian coordinates of points M,, M ,;

d) find polar coordinates of point 4, given its Cartesian coordinates 4(-3,4).

o

(pz_n o== =%
A M(3.%)  My(3-%)
3,%)
X X
(I)lngTc (p2=_7Tn
r=3
a b c
Figure 9.9

O a) Coordinate lines =1, »=2, r=3 are circles of respective radiuses, and lines

T =R =3T -
P=g> P=%5, 0= are rays (Fig. 9.9.a).

b) Let’s plot points M1(3,%Tn) and M2(3,—%) (Fig. 9.9, b,c). Their

coordinates have different polar angles, but the same principal value ¢ =2 . Hence, it

4

1s the same point that coincides with point A/ (3, %) , plotted on Fig. 9.9.qa.

c¢) Taking into account step ‘b’, find Cartesian coordinates of point M . By
formulas (9.11) obtain:

n_3N2

x=r-cosq)=3-cos4

; y=r-sin(p=3-sin%=

2 (30
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d) For point A(-3,4) by formulas (9.12) find radius 7, = J(=3)*+4% =5, and,
taking into account Fig. 9.8, the principal value of the polar angle

P, =+ arctan(_T3) =T— arctan%. |

The distance between two points A(r,,¢,) and B(r;, ;) (the length of

segment AB on Fig. 9.10) is calculated by the formula

AB=\/rj+r§—2-rA-rB-COS((PB—(PA),

’
/

B(I‘B, (|)B) ///’/ /

Figure 9.10

and the area S of a parallelogram constructed on vectors OA and OB — by the

#04,0B
formula

S,7i05 = rA-rB-sin|(pB -0, |
: : T 27
Example 9.6. Given polar coordinates ¢, = 3 r,=4 and @, = 3 r,=2 of

points 4 and B (Fig. 9.11), find:
a) the scalar product (OA4, OB);
b) the length of the interval AB;

c) the area of a parallelogram constructed on vectors OA and @;

d) thearea S, ; of the triangle OAB ;

e) the coordinates of the midpoint C of the interval 4B in the Cartesian

coordinate system, related to the given polar one.
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Figure 9.11

O a) By the definition of scalar product find:

(@,OB)z‘OA‘-‘OB‘-coswer-rB-cos((pB—(pA)=4-2-cosz3£-=4.

b) Calculate the length of the interval:

ABz\/rj+r§—2-rA-rB-cos((pB—(pA)=\/42+22—2-4-2°%:2-\/§.

¢) Find the area of a parallelogram constructed on vectors O4 and OB:
Sizaos =14 Ts -Sinl(pB —(I)A|=2-4-sin§=4\/§,

d) The area of the triangle OAB is calculated like a half of the area of a

parallelogram constructed on vectors OA and OB:
_1.
SOAB - 2 #OA OB~ 4‘/— 2‘/_

e) By formulas (9.11) find Cartesian coordinates of points 4 and B:

1 . NE)

X,=r,-cos@,=4-—=2; yAer-sm(pA=4-7=2\/§;

2
szrB-COS(pB=2-(—l]=—1; Vg =Fg-SInQ, =2- £—\/—

and then coordinates of the midpoint C of the interval AB:

:xA+xB:2+(_1):l. y _J’A+yB_2‘/§+‘/§_3‘[3_ m

D) 2 27 T ) 22
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9.3. CYLINDRICAL COORDINATE SYSTEM

To introduce a cylindrical coordinate system in space we need to:

e choose a plane (reference plane) and define on it a polar coordinate system
with pole O and polar axis Ox .

e draw axis Oz (applicate axis) through point O perpendicular to the
reference plane and choose its direction so that increase of polar angle, seen from

positive direction of axis Oz, happens counterclockwise (Fig. 9.12, a).

Figure 9.12

Cylindrical coordinates of point M is an ordered triplet of numbers r,¢p,z —
radius (r>0), azimuth (-1 <@ <n) and height (— <z <+o). The polar angle of

points that belong to the applicate axis is not determined, they are defined by height
and zero radius.

A cylindrical coordinate system Or@z can be associated with a Cartesian
coordinate system O7 j k (Fig. 9.12, b), the origin of which coincides with the

origin of the cylindrical coordinate system and basis vectors 7 ,k — with unit vectors
on the polar axis and the applicate axis, respectively, and basis vector j is chosen in
such way that triplet 7,/ ,k is right (giving us a standard basis).

Vice versa, if a right-handed Cartesian system is given in space, we can obtain

a cylindrical coordinate system (associated with the given Cartesian one) by

assuming positive abscissa semi-axis as the polar axis.
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Since applicate z of point M in a Cartesian coordinate system and height z in
a cylindrical coordinate system are the same, formulas that relate Cartesian

coordinates x,y,z of point M and its cylindrical coordinates 7, ¢, z, take the form:

X=r-cosQ,
y=r-singQ, (9.13)
z=12,

These formulas allow us to find Cartesian coordinates by the given cylindrical
ones.

The reverse conversion is performed by the formulas:

< (9.14)

The principal value of the azimuth ¢ (-nm <@ <) is found by the formulas
given on Fig. 9.8.

These formulas allow us to find cylindrical coordinates by the given
Cartesian ones.

Example 9.7. In the cylindrical coordinate system Or¢z:

a) built coordinate surfaces r=R, 0=0,0=0,, z=0, z=2z,;

b) find cylindrical coordinates of point A by the given Cartesian coordinates
A(4, -3, 2);

¢) find Cartesian coordinates of point B by the given cylindrical coordinates:

ry=2, (pB=2T, zy=1.
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Figure 9.13

O a) Coordinates surface »=R, i.e. geometric locus of points M (R,¢,z) with a

fixed value of radius =R, is a right circular cylinder, the axis of which coincides
with the applicate axis (Fig. 9.13). It explains the name of cylindrical coordinate

system. Coordinate surface ¢=¢,, 1.e. geometric locus of points M (r,¢,,z) with a

fixed value of azimuth ¢=¢,, is a half-plane bound by the applicate axis (Figure
9.13 shows half-planes ¢=0 and ¢ =0, =2T7°). Coordinate surface z=7z,, i.e.

geometric locus of points M (r,¢,z,)with a fixed value of height z=z,, is a plane
perpendicular to the applicate axis (Figure 9.13 shows planes z=0and z=2).

b) Find cylindrical coordinates of point A(4, -3, 2). The height z, =2, the

radius and the azimuth are found by formulas (9.14) taking into account Fig. 9.8:

-3 3
ro=+ ) =4+ (-3) =55 0, =arctani/—A=arctan—4—=—arctanZ; z,=2,
A

since —w<@<m and orthogonal projection of point 4 on coordinate plane Oxy

(reference plane) belongs to quadrant /).
c¢) Find Cartesian coordinates of point B. By formulas (9.13) calculate (see

Example 9.6):
Xg =7’B-COS(|)B:2-(—%):—1; yB:rB.sin(szz.g:\/g; Zg =1.0
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9.4. SPHERICAL COORDINATE SYSTEM

To introduce a spherical coordinate system in space we need to:

e choose a plane (reference plane) and define on it a polar coordinate system
with pole O (origin of the spherical coordinate system) and polar axis Ox .

e draw axis Oz (applicate axis) through point O perpendicular to the
reference plane and choose its direction so that increase of polar angle, seen from

positive direction of axis Oz, happens counterclockwise (Fig. 9.14, a).

M (p, 0,0) M z

N
~N
Y

0™
p

M, \ |k Y
/// r > J x
0 ¢y /

a b

Figure 9.14

Spherical coordinates of point M is an ordered triplet of numbers p,¢p,0 —
radius (p>0), polar angle (—n < ¢ < 1) and azimuthal angle (0 <0 < 7). The polar
angle of points belonging to the applicate axis is not determined, they are defined by

radius p and azimuthal angle 6 =0 for the positive part of axis Oz and 6= for its
negative part. The origin is defined by zero value of radius p. Sometimes angle

y =%—9, taking on values —%Sw S% , is called the azimuthal angle instead of

angle 6.

A spherical coordinate system Op@6 can be associated with a Cartesian
coordinate system O7 j k (Fig. 9.14, b), the origin of which coincides with the

origin of the spherical coordinate system and basis vectors 7 ,k - with unit vectors on

the polar axis Ox and the applicate axis Oz, respectively, and basis vector ; is

chosen so that triplet 7 , /,k is right (giving us a standard basis).
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Vice versa, if a right-handed Cartesian system is given in space, we can obtain
a spherical coordinate system (associated with the given Cartesian one) by assuming
positive abscissa semi-axis as the polar axis.
Formulas that relate Cartesian coordinates x,y,z of point M and its
spherical coordinates p,¢,0 follow from Fig. 9.14, b:
X=p-cosQ-sin0,
y=p-sin@-sin0, (9.15)
z=p-cosH.
This formulas allow us to find Cartesian coordinates by the given spherical
ones.
The reverse conversion is performed by the formulas:

X

cosp=—2—
N
y 9.16)

Sin @ = ——=—ou
JX+y°

0= arccosﬁ = arccos Z

\/x2 +y’ + 7

Formulas (9.16) allow us to calculate the polar angle ¢ with accuracy up to
summands 2nn, where ne Z. For x#0 it follows that tan(p=l. The principal
X

value of the polar angle ¢ (-7 <@ <) is found by the formulas given on Fig. 9.8.
Example 9.8. In the spherical coordinate system Op@0:
a) built coordinate surfaces p=R, p=¢,, 0=6, (0<6, <m);,
b) find spherical coordinates p,@,0 of point 4 by the given Cartesian
coordinates A4(4,—3,12);

¢) find Cartesian coordinates x,y,z of point B by the given spherical

coordinates: p=4; ¢= =R
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0=0,
P BNy
=2 S 7
/”‘ — L X
) O — >~
\ . R//
0=2 \I-/
¢=0
Figure 9.15

O a) Coordinate surface p =R, i.e. geometric locus of points M (R,¢,0) with a fixed
value of radius p = R, is a sphere with the center in the origin (Fig. 9.15). It explains
the name of spherical coordinate system. Coordinate surface ¢=¢,, i.e. geometric
locus of points M (p,(po,e) with a fixed value of polar angle ¢ =¢,, is a half-plane
bound by the applicate axis (Fig. 9.15 shows half-plane ¢=0). Coordinate surface
0=0,, i.e. geometric locus of points M (p,(p,@o) with a fixed value of azimuthal

angle =0, #Z, is a cone, axis of which coincides with the applicate axis and vertex

— with the origin. For 6 =% we obtain the reference plane. Fig. 9.15 shows cone

0=0, # % and reference plane 6 =%.

b) Find spherical coordinates of point A(4,-3,12). By formulas (9.16), taking

into account Fig. 9.8 (see Example 9.6), we obtain:

3 12
=42 +(=3)" +12° =13; ¢@=-—arctan—; ©O=arccos—.
P \/ (3) ® 4 13

c¢) By formulas (9.15) we obtain
x=p-cos<p-sin6=4-(—%)-(%)=—\/§; y=p-sin(p-sin6=4-(§)-(%)=\/g;

z=p-cosG=4-(—%)=—2\E. u
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EXERCISES

1. Consider coordinates x=n, y=m, z=n+2 of point 4 in old coordinate

systemOxyz . The new one O'x’y’Z’ is obtained by the translation by vector

§=3n-7-m-J+2-k and rotation by angle (p=% around applicate axis. Find

coordinates x', y', z' of point A in new coordinate system.

2. Given the polar coordinates r, =m, ¢, = %n and r,=m+5, @, = 67°—On of

points A and B find the length of segment 4B, area of triangle OAB and coordinates

of the middle point of AB in Cartesian coordinate system Oxy, associated with the
given polar coordinate system Or¢.

3. Given the cylindrical coordinate system Or@z and Cartesian coordinate
system Oxyz , associated to it, find:

a) cylindrical coordinates of the point A, if its Cartesian coordinates are
AQ2n, -3m, m+n),

b) Cartesian coordinates of the point B, if its cylindrical coordinates are:

r,=3n, (p3=%n, Zz=m.

4. Given the spherical coordinates system Op@6 and Cartesian coordinate

system Oxyz , associated with it, find:

a) spherical coordinates of the point A4, if its Cartesian coordinates are
A(2n, -3m, m+n),

b) Cartesian coordinates of the point B, if its spherical coordinates are:

I

p,=n+4, (pB=%+3O

n,93=%.
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CHAPTER 10. ALGEBRAIC PLANE CURVES

10.1. FIRST-ORDER CURVES (LINES ON PLANE)
10.1.1. Main Types of Equations for Lines on Plane

A nonzero vector 7 , perpendicular to the given line, 1s called a normal vector
(or simply ‘normal’) to this line. A direction vector of a line is a nonzero vector,
collinear with this line, i.c. belonging to the line or parallel to it. Two lines are called
collinear, if they are parallel or coincident.
General equation of a line on plane:
Ax+B-y+C=0, A*+B*=0. (10.1)
Way of representation: the line passes through point M, (x,,y,) perpendicular
to the vector 7=A-i +B-j (Fig. 10.1,a).
Geometric sense of coefficients: leading coefficients A, B are the coordinates

of the normal 7= A4-7 + B-J ; constant term C =—Ax, — B y,.

y N
M (X0, 10) Y
Normal
N 7
Jl A7 é p X
ol 7 N X 0 N
a b

Figure 10.1
Denoting radius-vectors of points M,(x,,y,) and M(x,y) by 7, and 7,

respectively, we can write a vector equation of a line on plane, passing through point
M,(x,,,) perpendicular to the normal 7=A4-i +B-j :
(F-7.7)=0.
The scalar product is equal to zero, representing perpendicularity condition of
vectors 7 —7 and 7 (see Section 9.7). In coordinate form the equation takes the

following form:
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A (x=x)+B-(y-,)=0. (10.2)

Normalized equation of a line on plane:
x-cosa+y-cosp—p=0, p=0. (10.3)
Way of representation: the line passes through point M (x,,y,) perpendicular
to the vector 7 =cosa -1 +cosP-; (Fig. 10.1,a).
Geometric sense of coefficients: leading coefficients cosa, cosf are direction

|A%+B%|

cosines of the normal 7 =coso-i +cosP-Jj ; constant term p= is the
vA*+ B?
distance from the origin to the line (Fig. 10.1,0).
Vector parametric equation of a line on plane:
r=r+t-p, teR, p#o0. (10.4)

Way of representation: the line passes through point A (x,,y,), which is
defined by radius-vector 7, collinear with the direction vector p =0 (Fig. 10.2).

Parameter ¢ in equation (10.4) has the following geometric sense: the value of
t is proportional to the distance between the initial point M, and point M , defined
by radius-vector 7.

Physical sense of parameter t: it is time in uniform rectilinear motion from

point M along the line. For t=0 point M coincides with the initial point M,
(7 =T7,), when ¢ is increasing, the motion happens in the direction determined by the

direction vector p.

Direction vector
of aline
p=a-i +b-j

Mo(anyo) M(x y)

3

Sy

O X

Figure 10.2
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Parametric equation of a line on plane:

{x:x“a't’ teR, a*+b*=0. (10.5)
y=Yy,+b-1t,

Way of representation: the line passes through point M (x,,y,,z,) collinear
with the vector p=a-7 +b-; (Fig. 10.3).

Geometric sense of coefficients. a and b are coordinates of direction vector of
the line p=a-i +b-J; x,, y, are coordinates of point M (x,,¥,,z,) that belongs to
the line. Parameter ¢ has the same sense as in equation (10.4).

Note that equation (10.5) is a coordinate form of equation (10.4).

Canonical equation of a line on plane:

L S A Y 1) (10.6)
a b

Way of representation: the line passes through point M (x,,,,z,) collinear
with the vector p=a-7 +b-j (Fig. 10.3).

Geometric sense of coefficients: a and b are coordinates of direction vector of

theline p=a-i +b-j; x,, ¥, are coordinates of point M,(x,,,,z,) that belongs to

the line.
Y /Direction vector
Mo(xmyo) Ofa__hne - -
/ p=a-i+b-j
/|
/0 x
Figure 10.3

One of the denominators a or b in equation (10.6) can be equal to zero, in this

case we assume the corresponding numerator equal to zero:

X=X V=W

0 p < x=x, —equation of a line parallel to the ordinate axis;

X=X V=X
a 0

< y=y,— equation of a line parallel to the abscissa axis.
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Affine equation of a line on plane passing through two given points:
r=(1-1)-r+t-1, teR. (10.7)

Equation (10.7) can be rewritten in coordinate form:

{x=(1—t)-x0+t-xl, eR
eR.

y=>A-t)-y,+1t-y,,

Way of representation: the line passes through two given points M, (x,,y,) and
M, (x,,y,) which are defined by radius vectors 7 and 7, respectively (Fig. 10.4).
Radius vector 7 defines the position of point M (x, y,z) that belongs to the line.

Geometric sense of coefficients: x,,y, and x,,y, are coordinates of points
My(x,,y,) and M (x,,,), through which the line (10.7) passes. Parameter ¢ in
equation (10.7) defines the position of point M (x,y,z) that belongs to the line, e.g.,
for t =0point M coincides with point 7 =7, and for # =1 — with point M, (¥ =F).

Equation of a line on plane passing through two given points M,(x,,Y,)

and M (x,,),):

Th VN (10.8)
X=X =MW
Way of representation: the line passes through two given points M (x,,,) and
M, (x,») (Fig. 10.4).
Geometric sense of coefficients: x,,y, and x,,y, are coordinates of points
M,(x,,y,) and M (x,y,), through which the line (10.8) passes. Like in the

canonical equation, one of the denominators in (10.8) can be equal to zero, assuming

the corresponding numerator equal to zero as well.
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Figure 10.4

Two intercept form for the equation of a line:

i+l:])xl¢ojyl¢0_ (10.9)

XN
Way of representation: the line passes through two given points X,(x,,0) and
%(0,,) (Fig. 10.5),
Geometric sense of coefficients: line (10.9) intercepts coordinate axes, cutting

off segments x, on the abscissa axis and y, on the ordinate axis.

y

NI

Figure 10.5

Slope-intercept form for the equation of a line (equation solved for y):
y=k-x+y,, k=tana. (10.10)

Way of representation: the line passes through point ¥,(0,y,) including angle
a (0<a<m, a#Z%)to positive direction of the abscissa axis (Fig. 10.6).
Geometric sense of coefficients: k 1is the slope of the line and y, is the

ordinate of point ¥,(0, y,), through which the line (10.10) passes.
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Y Slope
k =tana

h Yo(ano)a

ol N «x

Figure 10.6

If the line passes through the given point M, (x,,¥,), we use the slope-

intercept form of the equation as: y—y, =k-(x—x,).

Ways of Converting from One Form of Line Equation to Another

1. To convert from the general equation of a line (10.1) to the normalized one

(10.3) it is sufficient to divide both parts of the general equation by the length of the

normal |77|=4 4%+ B*, if the constant term is negative (C <0), or divide by its

opposite —|7 |= -4/ A* + B*, if the constant term is non-negative (C >0).

2. To convert from the general equation of a line (10.1) to the canonical one
(10.6) we should make the following steps:
1) find any solution (x,,y,) to equation A-x+B-y+C =0, thus defining

coordinates of point M (x,,y,) that belongs to the line;

2) find any nonzero solution (a,b) of homogeneous equation 4-a+ B-b=0,
thus defining coordinates a,b of the direction vector p, in particular we can assume
a=B,b=-4,;

3) write canonical equation (10.6).

3. To convert from the canonical equation of a line to the general one it’s

sufficient to transpose all terms of equation (10.6) to the left part:

X=X Y= =0 o l.x_l.y+&—f£=0.
a b a b b a
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: : 1 1
Obtained equation (for a=0, b= 0) takes on form (10.1) where A=—, B=
a
c=2_%
b a
4. To convert from the canonical equation to the parametric one, assume left

and right part of equation (10.6) equal to parameter ¢ and write obtained double

equation in form of a system (10.5):

y=Yy,+b-t,

5. It is possible to convert the general equation of a line (10.1) to the two
intercept form (10.9) if all coefficients of general equation are not equal to zero. To
do this, it is necessary to transpose the constant term to the right part of the equation:

Ax+B-y=—C, and then divide both part of the equation by -C:

. C C : : .
——-x+——-y=1.Denoting x, =——, y, =——, obtain the intercept equation (10.9):
v Y gx=""n N=o pt eq (10.9)

XN

6. To convert from the general equation of a line (10.1) 4-x+B-y+C =0 to

slope-intercept form (10.10), it is necessary to solve the general equation for the
unknown y:

y——é-x—g = =k-x+
B B y yO:

where £ = 3 Vo = —%. This conversion is possible if B=0.
Example 10.1. Given points K(1,2) and on L(5,0) coordinate plane Oxy (in

Cartesian coordinate system), write the equation for the perpendicular bisector of
segment K1 (Fig. 10.7).
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Figure 10.7
[ The perpendicular bisector, by definition, passes through the midpoint of segment

KL perpendicular to it. Let’s find coordinates of the midpoint M of segment KL
(see a special case of formula (9.1) in Section 9.1.1): M(I—E—S,%) ie. M(3,1).
Vector KL can be taken as the normal to the perpendicular bisector. Find coordinates

of this vector by subtracting coordinates of its tail from the corresponding coordinates

(UM

Hence, equation (10.1) of the required line is given by 4-x-2-y+C=0.

of 1ts head:

Now we only have to find the value of the constant term C. Since point

M (3, 1) belongs to the line, its coordinates x =3,y =1 must satisfy the equation of
this line, hence, 4-3-2-1+C =0. Thus C =-10.

Hence, the perpendicular bisector is determined by the following equation:
4-x-2-y-10=0 < 2-x-y-5=0.
The equation of this line can also be obtained in form (10.2), by inserting

coordinates of the normal 7 = (4 —2)T and point M (3,1):
4-(x-3)-2-(y-1)=0.

The solution is obtained analytically, without using graphic representation (see
Fig. 10.7). Plots in analytic geometry, as a rule, serve only as illustrations to

solutions. ®
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Example 10.2. Given line /, represented by equation x-3-y+3=0, and
point M (5,6) (Fig. 10.8) on coordinate plane Oxy (in Cartesian coordinate system),
1t 1s required:

a) write parametric equation of line m passing through point M
perpendicular to the given line;

b) find orthogonal projection M, of point M to line /;

¢) find coordinates of point A/’, symmetrical to point M with respect

to line /.

Figure 10.8

O a) Normal 7 to line / is the direction vector p to line m. Coordinates of the

normal can be found from the general equation of line /: w=1-i —3-7, then
p=1-i-3-7,x,=5, y,=6. Write the parametric equation (10.5) of line m :

x=5+1-¢,
relR
{y=6+(—3)-t,

b) Projection M, of point M 1is the intersection point of lines m and /. Let’s

find its coordinates. To do this, insert expressions of coordinates x=5+7,

y=6-3-1 from the parametrical equation of line m into the equation of line /:

x—3-y+3=0. We obtain the equation:

S+1-3-(6-31)+3=0 < 10-1-10=0 < ¢=1.

—
x —
y

The value =1 of the parameter is corresponded by the point with coordinates

x=5+1=6, y=6-3-1=3. Thus, the point in question is M, (6,3).
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¢) During step "a" we wrote the parametrical equation of line m. From this

equation for # =0 we obtain point M , for ¢t =1 — point M, , thus the point in question
M’ is obtained for ¢ =2, since by symmetry MM, =M ,M . Find the coordinates of
the required point:

M'(5+1-2,6+(-3)-2), ie. M'(7,0). m

10.1.2. Geometric Relationships of Lines on Plane

Let two lines /, and /, be given by their general equations
l: A-x+B-y+C; =0, l,; A4 -x+B,-y+C,=0
or equations in slope-intercept form:
l:y=k -x+b; L,y y=k,-x+b,.

Geometric relationship of two lines on plane can be assessed by coefficients of
their equations with the help the following criteria:

e parallel lines:

A B LG o k=ky, b b
4 B C,

coincident lines:

i:ﬁzg or k=k,, b=>b,;
A2 2 2
e collinear lines:
AL or k=k,;
A2 2
e intersecting lines:

A-B,#A,-B, or k#k,;
e perpendicular lines:

A-A,+B-B,=0 or k-k,=-1.
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If two lines intersect, coordinates of the common point can be obtained by

solving one of the systems:

{Al-x+Bl-y+C1=O, {yzkl-x+b1,

or
A -x+B,-y+C,=0 y=k,-x+b,.

Example 10.5. Find geometric relationships of each pair of lines (intersection,
parallelism, incidence, perpendicularity, if lines intersect, find their common point):

a) 2:x—y+3=0,-4-x+2-y-6=0;

b) 2:x+3-y-6=0,4-x+6-y+3=0;

c) 3-x-2-y+1=0, 4.-x+6-y-16=0;

d) x+2.-y-3=0,x-4-y+3=0;

e) y=—4-x+1, y=—-4-x-3;

f) y=-x+1, -2-x+2-y-6=0.

. 1
O a) Since 4, =2, B =-1, (=3, 4,=-4, B,=2, C,=-6 and iziz——,
A, -4 2
By = —l, G =i= —l, then A = By = G = —l. Hence, lines are coincident.
B, 2°C, - 2 A, B, C, 2
. A4 1
b) Since 4 =2, B =3, C,=-6, A,=4, B,=6, (,=3 and —=—,
A, 2
ﬁ=l, Q=—2,then i=ﬁ;z&Q.Hence, lines are parallel.
B, 2 C, 4, B, C,

c) Since 4 =3, B=-2, C=1, A,=4, B,=6, (,=-16, then
A-B,=3-6=18 and A4,-B,=4-(-2)=-8. Hence, A4 -B,#A4,-B and lines
intersect. Since A -A4,+B,-B,=3-44+(-2)-6=0, lines are perpendicular.
Coordinates of the intersection point (1;2) satisfy the system of equations

3. x=-2-y+1=0,
4.x+6-y—-16=0.

d) Since4, =1, B,=2, C,=-3, 4,=1, B,=—4, C,=3,then 4,-B,# 4, B,
and 4,-A4,+B,-B,=1-1+2-(-4)=-7%#0. Hence, the lines intersect, but they are
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not perpendicular. Coordinates of the intersection point (1;1) satisfy the system of

, x+2-y-3=0,
equations
x-4-y+3=0.

e) Since k,=-4, b =1, k,=—-4, b,=-3, then k, =k, u b #b,. Hence, lines
are parallel.

f) For the first line we have k, =-1, b, =1. Solving the second equation for y,
we obtain equation y=x+3,1.e. k,=1, b,=3. Since k, #k,, lines intersect. Since
lines are perpendicular. Coordinates of the intersection point (—1; 2) satisfy the

, y=—x+1,
system of equations
y=x+3.

10.1.3. Metric Applications of Line Equations on Plane

Let’s give formulas for calculating lengths of a line segments (distances) and
values of angles by the equations of lines that form them.

An angle between two lines on plane is the angle between their direction
vectors. By this definition we get not one, but two adjacent supplementary angles that

add up to w. In elementary geometry, as a rule, the smaller of the two angles i1s
chosen, i.e. value ¢ of an angle between two lines satisfies the condition 0 < ¢ < %
1. The distance d from pointAd*(x*,y") to line4-x+ B-y+C =0(Fig. 10.9,

|A-x*+B-y*+C|

\[AZ+B2

a) is calculated by the formula d =

y M* (x5 1 M,(x,,9,)
\ 4 J A,x+B,y+C,=0
1
Ax+By+C=O — A1x+Bly+C1=O
N> X %
0 4 O ,

Figure 10.9
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2. The distance between two parallel lines 4 -x+B,-y+C =0 and
A,-x+B,-y+C,=0 (Fig.10.9, b) is calculated as the distance d, from point
M,(x,,y,), coordinates of which satisfy equation 4, -x,+B,-y,+C,=0, to line
A4, -x+ B, -y+C, =0 by formula
d :|A1-x2+Bl-y2+C1|.

\/ Al + B}

3. The acute angle ¢ between two lines /, and /, is found by formulas
|a,-a,+b,-b,|
Jai bt ad+b?

direction vectors of lines [/, and /,, respectively (if lines are given by the

a) cosQ= ,if py=a,-i +b,-] and p,=a,-i +b,-J are

canonical or parametric equations (Fig. 10.10, a));
|4,-4,+B,- B, |
J AZ2+BE | A2+ B

b) cos@= , if m=A4-i+B-j and 7@=A4,-i+

+B,-j are normals to lines /and [,, respectively (if lines are given by the
general equations (Fig. 10.10, a));

kl _kz

—1+k1 | k -k,#=-1,1f k =tana, and k, =tana, are slopes of

c) tanop=

lines / and /, respectively (if lines are given by the equations in slope-intercept

form (Fig. 10.10, b)). If k -k, =-1, then ¢ =2, since lines are perpendicular

2 2
(see Section 10.1.2).

y

orr / X

Figure 10.10
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Example 10.6. Find:
a) the distance from point M*(l,— 2) toline 3-x+4-y+10=0;
b) the distance between parallel lines 2-x+3-y—-6=0 and 4-x+6-y+2=0;
c) the acute angle between lines /: 3-x—y—-3=0and /,: x-2-y+4=0;

: — - -4 -2
d) the acute angle between lines x_llzy_33 and xl 4 5 :

>

e) the acute angle between lines y=3-x-1land y=-2-x+2.

O a) Let’s use the first formula of metric applications (x" =1, y"=-2, A=3, B=4,

[ 4-x"+B-y' +C| |3144-(-2)+10] 5
\/A2+BZ V32 4 42 5

C=10): d= 1.

b) Let’s choose an arbitrary point M,(x,,y,) on the second line
4.x+6-y+2=0, eg., point M,(1,—1). Then by the second formula of metric
applications we obtain (for 4 =2, B, =3, C,=-6, x,=1, y,=-1):

:|A1-x2+Bl-y2+Cl|:|2-1+3-(—1)—6|: 7

d )
1 \/A12+Bf \/22+33 J13

c¢) By the general equations of lines find normals
m=A-i+B-j=3i-1-j, m=A4,-i+B,-j=1-i1-2-7,
and angle ¢ between the lines by the third formula of metric applications (case “b™)
(for 4 =3, B =-1, 4 =3, B,=-2):

|4-4,+B-B,| _ |3-1+(-1)-(-2)] _5 =L3q,=_
JA+B J A+ 3+ JrPrE27 52 2 4

d) The lines are given by the canonical equations. By coefficients of the

a

COS P =

equations find direction vectors p=a-i+b-j=-1-i-3-7,
Dy=a, i +b,-j=1-i —2-j and then — angle ¢ between the lines by the third

formula of metric applications (case “a”) (for @, =-1, b =-3, a,=1, b,=-2):
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|a,-a,+b,-b,]| _ |(=1)-1+(=3)-(-2)| 51
Jairor-Jaenl JE0+ (3T’ J1045 2

CoS P =

=TI
¢= 4
e) By the equations of lines find their slopes: k, =3, k, =-2, and then — angle
¢ between the lines by the third formula of metric applications (case “c”):

kl_kz
l1+k -k,

3-(2) =l,ie. o=%. H

tanQ =
® 1+3-(=2) 4

Example 10.7. Write the equation of a line passing through point y, =1 on the

ordinate axis and forming angle £ with line y=L-x+1.

4

2

ll
T
4

/|0 x

Figure 10.11

i

O The required line (with slope k) makes acute angle ¢ = A

with the given line /

(with slope %), tan @ =1. By the third formula of metric applications (case “c”),

taking into account that ¢ is an acute angle, compose the equation and simplify it:

{ o k-i=1+1k,
k-1=-1-1-k.

2

I
H

We obtain two solutions: k, =3 or k, = —%. Hence, taking into account (10.10) for

¥, =1, there are two lines that satisfy the given problem (Fig. 10.13) - /;: y=3-x+1

orl,. y=- Lys1 Note, that these lines are mutually perpendicular, since condition

3
k-k,=3-(- %) =—1 is satisfied. ®
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10.2. SECOND-ORDER CURVES
10.2.1. Classification of Second—Order Curves

A second-order algebraic curve is the locus of points in plane which in some
affine coordinate system Oxy can be given by an equation in form
a X’ +2-a,-x-y+a, -y +2-a-x+2-a,-y+a,=0,
where leading coefficients a,,, a,,, a,, are not equal to zero at the same time
(al +a, +a;, #0). For every second-order algebraic curve there exists a Cartesian
coordinate system Oxy, in which the equation takes on the simplest (canonical)

form. This coordinate system, as well as the equation, are called canonical.

Canonical Equations of Second—Order Curves

x2 y2
1) 7 + re =1 — equation of an ellipse;
x2 y2
2) p + ol —1- equation of an imaginary ellipse;
X2 y2
3) = + i 0 — equation of a pair of imaginary intersecting
lines;
x2 y2
4) P 1 — equation of a hyperbola;
x2 y2
5) priy =0 — equation of a pair of intersecting lines;

6) y*=2-p-x —equation of a parabola;

7) y*—b* =0 — equation of a pair of parallel lines;

8) y*+b°=0 — equation of a pair of imaginary parallel
lines;

9) y* =0 — equation of a pair of coincident lines.




In these equations a >0, h>0, p >0, where a>b in equations 1-3.

Lines (1),(4)~(7),(9) are called real, and lines (2),(3),(8) — imaginary. Real
lines are sketched out in canonical coordinate systems. Imaginary lines are hatched
only for illustration.

A second-order curve is called a central conic if it has a unique center of
symmetry. Otherwise, if a center of symmetry does not exist or is not unique, a line is
called non-central. Central conics are ellipses (real and imaginary), hyperbola, a pair

of intersecting lines (real and imaginary). Other curves are non-central.
10.2.2. Ellipse

An ellipse is a locus of points on plane for each of which the sum of distances

to two given points F, and I, is constant (2a), and bigger than the distance (2c)
between these given points (Fig. 10.12, @). Points F; and F, are called focal points
(foci), the distance between them 2c=FJF, — focal distance, midpoint O of
segment [1[), — center of the ellipse. Segments FAf and [,M that connect an

arbitrary point M of the ellipse with its foci are called focal radiuses of pomnt M .

Ellipse
EM +FM =2a

Figure 10.12

Proportion e = < s called an eccentricity of an ellipse. By definition (2a > 2¢)
a

it follows that 0 <e<1. The bigger is e, the more elongated an ellipse gets. For

e=0,1.e. for c=0, foci /| and F,, as well as the center O coincide, and ellipse is a

circle of radius a .
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In a canonical coordinate system, chosen as illustrated on Fig. 10.12, b,

an ellipse can be given by canonical equation

2 2
x—2+y—=1,
b

Q

where h=+a*-¢* .

Coordinate axes (of the canonical coordinate system) are the axes of symmetry
of the ellipse (called principal axes, the larger of these two axes is called the major
axis, the smaller — the minor axis), and its center — center of symmetry. Segments a

and b are called semi-major and semi-minor axis of the ellipse, respectively,

proportion % =%£1 is called an aspect ratio. Lines x=+a, y==xb bound on the

coordinate plane the principal rectangle, inside of which the ellipse is situated (see

Fig.10.12, ). Points where coordinate axes cross the ellipse are called the vertices of

the ellipse.
Parametrical equation of an ellipse in a canonical coordinate system takes the
form:
X=a-cost,
, 0<t<2m.
y=>b-sint,

Equation of an ellipse in a polar coordinate system F,r¢ (Fig. 10.12, ¢) takes

the form:
p=—P ,
I-e-cosq

2
where p= L is the focal parameter of an ellipse, 0 <e<1.
a

2 N2
(x ;Co) + (v 2yo) ~1
a b

point O'(x,,,), axes of which are parallel to the coordinate axes (Fig. 10.13, a). This

Equation , a>b, defines an ellipse with the center in

equation can be reduced to the canonical one by translation. For a <4 this equation

defines an ellipse, foci of which are situated on an axis parallel to the Oy axis
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(Fig. 10.13, b). In this case the equation can be reduced to the canonical one by

translation and changing the names of coordinate axes (see Section 9.1.2).

a>b a<b a=b=R
Y x Y ,
y Y g 1
b /"A /\ ,
X' yO —-d 2c OI a yo k
” Q /a kﬂy R
5 _ L
BT Xo X 5T X X -_OT Xo X
a b c

Figure 10.13

For a=bh=R equation (x-x,)*+(y—y,)’ = R* defines a circle of radius R

and center in point O'(x,,y,) (Fig. 10.13, ¢).
Example 10.9. Sketch ellipses

2 2
Y .
a) ?4‘1—2:1,

(x-D° »-2° ..
b) % + 7 =1;
(x=3)° W+’
C) 7 + ¥ =1

in the given (Oxy) and canonical (O'x"y") coordinate systems. Find semi-axes, focal

distance, eccentricity, aspect ratio and focal parameter.

: y o
y=y Y
1 1 3 X
x=x 2 x' o) - g 3
5 0=0/2 SN0 2 -1 1} [0
-1 -1
Ol 1 X -2
a c

Figure 10.14
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O a) Coordinate system Oxy is canonical, since the given equation is in canonical

form. By the equation define semi-axes: a=2 is the semi-major axis, b =1 — the
semi-minor axis. Built the principal rectangle with sides 2a=4, 2b =2 and center in

the origin (Fig. 10.14, a). Taking into account the symmetry of the ellipse, inscribe it

into the principal rectangle. Find the aspect ratio £= b ; focal distance

E:
2-c=2-/ a*=b* =2-4/22—1 =243 eccentricity ezﬁzﬁ' focal parameter

b) Comparing the given equation to the equation of an ellipse

(x_xo)2 + (y- y0)2
2 2
a b

=1, we obtain x,=1, y,=2, a=2, b=1. Taking into account

Fig. 10.13, a, sketch the given ellipse in the given and canonical coordinate systems
(Fig. 10.14, b).

Note, that the canonical coordinate system (O'x"y’ is obtained from the given one after

translating it by the vector §=1i +2-j. In other words, change of unknowns

"2 "2
x=1+x", y=2+)" converts the equation to the canonical form: @ + @ =1.
2 1

Since the canonical equation of the ellipse is the same as in “a”, all the other

parameters of these ellipses are the same: k==; 2-c= 2\/5; e= @; p= %

DO |—

c¢) Comparing the given equation to the equation of an ellipse

(x'_xo)2 (y_yo)2
aZ + b2
Fig. 10.13, a, sketch the given ellipse in the given and canonical coordinate systems

(Fig. 10.14, ¢).

=1, we obtain x, =3, y,=-1, a=1, b=2. Taking into account

Note, that the canonical coordinate system O'x")y’ is obtained from the given
one after translating it by the vector §=3-i — ; and changing the names of the axes.

In other words, change of unknowns x=3+3)' y=-1+x" converts the equation to
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(x)*

the canonical form: T +

oy

T 1. Since the canonical equation of the ellipse is the

[P

same as in “a”, all the other parameters of these ellipses are the same: k=%;

2-c=2\/§; e=£' -l m

27 2
10.2.3. Hyperbola

A hyperbola is a locus of points on plane for each of which the module of the

difference of distances to two given points F and F, is constant (2a) and smaller

than the distance between these given points (2¢) (Fig. 10.15,a).

Hyperbola
| FM -FM |=2a

b _b
y=——-X y—’a X

Figure 10.15
Points / and F, are called the foci of the hyperbola, the distance 2c¢ = FF,

between them — focal distance, midpoint O of segment FF, — center of the

hyperbola. Segments M and F,M that connect an arbitrary point M of the

hyperbola with its foci are called focal radiuses of point M . Proportion e=< s

a
called an eccentricity of the hyperbola. By definition (2a < 2¢) it follows that e>1.
Eccentricity e define the form of the hyperbola. Bigger values of e correspond to
hyperbolas with wider branches, while values closer to 1 correspond to hyperbolas
with more narrow branches.

In a canonical coordinate system, chosen as illustrated on Fig. 10.15, b, a

hyperbola can be given by canonical equation
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2 2
X
A
a b

where h=+c*-a* .

Coordinate axes (of the canonical coordinate system) are the axes of symmetry
of the hyperbola (called principal axes), and its center — center of symmetry, a —
real semi-axis, b — imaginary semi-axis of the hyperbola. Lines x=xa, y=+b
bound on the coordinate plane the principal rectangle, outside of which the

hyperbola is situated (see Fig. 10.15, b). Points where coordinate axes cross the

ellipse are called the vertices of the hyperbola. Lines y=ié-x that contain the
a

diagonals of the main rectangle, are called the asymptotes of the hyperbola (see Fig.
10.15, b).

The equation of the right branch of a hyperbola in a polar coordinate system

: : b* .
F,ro (Fig.10.15,c) may be written as rzL, where p=— 1is the focal
I-e-cos@ a
parameter of the hyperbola, e >1.
Parametrical equation of a hyperbola in a canonical coordinate system takes

the form:

te

2

x=a-cosht,
y=>b-sinht,

t -t -t

e +e’ . : . : e
where cosht = is hyperbolic cosine and sinh¢ =

is hyperbolic sine.

(x=x)° (y=y)
a2 2

Equation =1 defines a hyperbola with the center in point

O'(x,,,), axes of which are parallel to the coordinate axes (Fig. 10.16,a). This

equation can be reduced to the canonical one by translation.

_(x_xo)2 + (y_yo)z
2 2
a

Equation =1 defines a conjugate hyperbola (Fig.10.16,

b) with the center in point O'(x,,y,). This equation can be reduced to the canonical

one by translation and changing the names of coordinate axes (see Section 9.1.2).
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(x_xo)z_(y_yo)z_l _(x_xo)2+(y_yo)2 1

a2 b2 B a2 b2 - Y y' xn
y yr y X \\ 3//
1,1 P b, 1"
, 0, 2
a
yO yO y 6_ C) x'
o % T R SV TN
a b C

Figure 10.16

Example 10.10. Sketch hyperbolas
-4 =-6"_..
> 3 -

b) (y ;26) _ (x ;24) -1

a)

in the given (Oxy) and canonical coordinate systems. Find semi-axes, focal distance,
eccentricity, focal parameter, and equations of the asymptotes.

O a) Comparing the given equation to the equation of a hyperbola

(x_xo)2 _ (y— yo)2
a’ b

Fig.10.18,a, built the principal rectangle with sides 2a=4, 2b =6 and center in the

=1, we obtain x,=4, y,=6, a=2, h=3. Taking into account

origin of the canonical coordinate system. Draw the asymptotes by extending the
diagonals of the principal rectangle. Build the hyperbola, taking into account its
symmetry with respect to the coordinate (drawn in full line of Fig.10.16, ¢).

Note, that the canonical coordinate system O'x’y’ is obtained from the given
one after translating it by the vector §=4-i +6-;. In other words, change of

unknowns x=4+x", y=6+)" converts the equation to the canonical form:
"2 "2
% - ()3/—2) =1. Calculate the focal distance 2-c=2-y @’ +b’=

2

2
=2.+/2% + 3% =24/13; eccentricity e=%=@; focal parameter p=%z7=4,5.
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Write  equations of the asymptotes y—-y,=t2-(x-x,), 1e.
y—6=%3.(x-4).

b) Comparing the given equation to the equation of a hyperbola

_(x_x0)2 + (y_yo)2
2 2
a b

hyperbola, conjugate with the one built in “a”. Taking into account Fig.10.16, b, build

=1, obtain parameters x,=4, y,=6, a=2, b=3 of a

[

the principal rectangle and the asymptotes as in “a”, and then build the conjugate
hyperbola (hatched on Fig.10.16, ¢).

Note, that the canonical coordinate system O'x"”y” is obtained from the given
one after translating it by the vector § =47 +6-; and changing the names of the

coordinate axes. In other words, change of unknowns x=4+ 3", y=6+x" converts

12 2
the equation to the canonical form: ();2) - (J; 2) =1 (here a=3, b=2). Calculate

the focal distance 2-c=2-+f a®+ 5> =2-4/32 +22 =213 ; eccentricity e=c=A3.

focal parameter p=£ =% =4 Equations of the asymptotes are the same as in “a”. W

10.2.4. Parabola

A parabola is a locus of points on plane that are equidistant from a given point
F and a given line d that does not pass through this point. Point F' is are called the
Jocus of the parabola, line d — directrix of the parabola, midpoint O of the
perpendicular dropped from the focus on the directrix — vertex of the parabola,

distance p between the focus and the directrix — parameter of the parabola, and

distance £ between the vertex and the focus — Jocal length (Fig. 10.17, a).

2

Parameter p of the parabola define its form. Bigger values of p correspond to

parabolas with wider branches, while values closer to 0 correspond to parabolas with

more narrow branches.

185



Parabola

MM =
dFM

Figure 10.17

A line, perpendicular to the directrix and passing through the focus, is called
the axis of the parabola (focal axis). Segment FM that connects an arbitrary point
M of the parabola with its focus is called a focal radius of point M . Eccentricity of
a parabola equals one by definition (e =1).

In a canonical coordinate system, chosen as illustrated on Fig. 10.17, b, a
parabola can be given by canonical equation

y'=2-p-x.

In this coordinate system equation of the directrix is x = — L coordinates of

2 >

the focus are F (%, O). The axes of the canonical coordinate system are called the

principal axes of the parabola.

Equation of a parabola in a polar coordinate system I'r¢ (Fig. 10.17, ¢)
takes the form:

P — ,
l-e-cos@

where p i1s the parameter of a parabola, e =1 is its eccentricity.
Equation (y—y,)>=2-p-(x-x,), p#0, defines a parabola with vertex
0'(x,,¥,), the axis of which is parallel to the abscissa axis: for p >0 the directions

of axes Ox and O'x" are the same (Fig. 10.18, a), and for p <0 they are opposite
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(Fig. 10.18, b). This equation can be reduced to the canonical one by translation (and

changing the direction of the abscissa axis if p<0).

(y-1,)" =2p(x—x,) (x=x)"=2p(y-,)
p>0 p<0 p>0 p<0
Y% 4 vy v X y
~
yo X' X' y() yr O' ,
O’ O Yo o Y
// O! xO \
O X0 X O Xo X O Xo X 0] ! xr ’ X
a b C d

Figure 10.18

Equation (x—x,)*=2-p-(y—y,), p#0 , also defines a parabola with vertex
O'(x,,¥,), the axis of which is parallel to the ordinate axis: for p >0 the directions
of axes Oy and O'x" are the same (Fig. 10.18, ¢), and for p <0 they are opposite
(Fig. 10.18, d). This equation can be reduced to the canonical one by translation,
changing the names of the coordinate axes (and changing the direction of the ordinate
axis if p<0).

Example 10.11. Sketch parabolas

a) ¥=2-x; b) (3-17=-2-(x-2); © (x-2=2-(y+D);
in the given (Oxy) and canonical (O'x"y") coordinate systems. Find the parameter of

the parabola, coordinates of the focus and equation of the directrix

O a) Coordinate system Oxy is canonical, since the given equation is in canonical
form. From the equation obtain the parameter p =1. Build the parabola, taking into

account its symmetry with respect to the abscissa axis (Fig. 10.19, a). Coordinates of

the focus are x, =§=%, y-=0,1e F (%, 0). Write the equation of the directrix

x=-L je x=-1

2° 27
b) Comparing the given equation to the equation of a parabola

(y—¥,)"=2-p-(x-x,), weobtain x,=2, y,=1, p=-1<0. Taking into account
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Fig. 10.20, b, build a parabola, symmetric with respect to axis O'x" (Fig. 10.19, b).
Note, that the canonical coordinate system O'x'y’ is obtained from the given

one after translating it by the vector § =2-7 + j and changing the direction of the

abscissa axis. In other words, change of unknowns x=2-x", y=1+)' converts the

equation to the canonical form: (3')> =2-1-x". Since the canonical equation of the

parabola 1s the same as in “a”, the value of the parameter, the equation of the directrix

x' = —% and coordinates xJ, =§=%, V- =0 of the focus are the same as the ones
obtained in “a”.
c) Comparing the given equation to the equation of a

parabola(x—x,)*=2-p-(y-y,), we obtain x,=2, y,=—1, p=1>0. Taking into
account Fig. 10.18, ¢, build a parabola, symmetric with respect to axis O'x’ (Fig.
10.19, ¢).

Note, that the canonical coordinate system (O'xy’ is obtained from the given
one after translating it by the vector §=2-i —j and changing the names of the
coordinate axes. In other words, change of unknowns x=2+)", y=-1+x" converts
the equation to the canonical form: (3’)>=2-1-x". Since the canonical equation of

1

the parabola is the same as in “a” and “b”, the equation of the directrix x'= ) and
coordinates X = g =%, ¥ =0 of the focus are the same as the ones obtained in “a”
and “b”. &
y y Y v}
y) SRR : ~ \
o L XN 0.5\ 2 x
: X -1 '
—2 el 0/./ 2 O
a b c

Figure 10.19
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EXERCISES

1. For the line, which passes through the points A(1, 4) and B(2,0), compose:

a) general equation; b) parametric equation; c¢) canonical equation;

d) intercept equation;slope-intercept equation.

2. Find information about positional relationship of each pair of lines (are they
skew, intersecting, parallel, equal, perpendicular, if they are intersecting find their
mutual point):

a) x+y-3=0, 2-x+3-y-8=0;

b) y=5-x-24, y=—0,2-x+2;

y=-2-2-¢, -2 1~

x=5+4-¢, -1 -7
C) { al J

x+6 y-6

d) 4-x+5-y-6=0, 1

3. On coordinate plane Oxy sketch ellipses:

G’ m o ) e
(m+n)2 n* ’ m* (m +n)2 '

a)
For each ellipse find its focal distance, aspect ratio, focal parameter and
eccentricity, coordinates of center, focuses and vertexes.

4. On coordinate plane Oxy sketch hyperbolas:

2 (H?)Z_(y—zm)zzl; b) (y+2n)2_(X+;n)2:1'
m n m n

For each hyperbola find its focal distance, focal parameter and eccentricity,
coordinates of center, focuses and vertexes, equations of asymptotes.

5. On coordinate plane Oxy sketch parabolas:

a) (y—-m)’=2-n-x; b)(y+m)’=2-(n-x); ¢) (x—=m)>=2-m-(y+n).

For each parabola find its parameter, coordinates of vertex and focus, equation

of directrix.
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CHAPTER 11. ALGEBRAIC LINES AND SURFACES IN SPACE

11.1. FIRST-ORDER SURFACES (PLANES)
11.1.1. Main Types of Plane Equations

A nonzero vector 7, which is perpendicular to the given plane, is called
normal vector (or simply normal) for this plane.

Recall, that three of more vectors are called coplanar, if there exists a plane,
that they are parallel to. We will call this plane coplanar to the given vectors.

Direction vectors of a plane are two noncollinear vectors, which are coplanar
to the given plane, i.c. they belong to the plane or they are parallel to it.

General (point-normal) equation of a plane:

Ax+B-y+C-z+D=0, A*+B*+C*=0. (11.1)

Way of representation: plane passes through point M, (x,,¥,,z,) and it is

perpendicular to vector i=A-7 +B-j +C-k (fig.11.1, a).

Figure 11.1

Geometric sense of coefficients: leading coefficients 4, B, C are coordinates
of thenormal 7=A4-7 +B-j +C -k ; constant term D=-A-x,~B-y, - C-z,.
Denoting radius vectors of points M, (x,,y,,2,) and M(x,y,z) by 7 and 7
accordingly, it is possible to write vector equation of a plane, which passes through

the point M (x,, ¥,,2,) and which is perpendicular to normal 7=A4-7 +B-j+C -k :
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(F-7,,n)=0.
Right zero part of the scalar product denominates perpendicularity condition of

vectors 7 —7, and 77 (Section 8.7). In coordinate form equation can be expressed in

the following form:
A(x=x)+B-(y—y,)+C-(z-2z,)=0. (11.2)
Normalized equation of a plane:

x-coso+ y-cosp+z-cosy—p=0, p=0. (11.3)

Way of representation: plane passes through the point M (x,,¥,,z,) and it 1s
perpendicular to the vector 77 =coso -7 +cosP- j +cosy-k (Fig. 11.1, a).

Geometric sense of coefficients: leading coefficients cosa, cosf, cosy are
direction cosines of normal 7 =cosa-i + +cosP-j+cosy-k; constant term
B |A-x0+B-y0+C-ZO|
B J A2+ B+
(Fig. 11.1, b).

Vector parametric equation of a plane:

p is the distance between the coordinate origin and the plane

7:70"41'?1""1‘2'?2: II,IZGR, [ﬁlapz]¢5~ (11~4)

Way of representation: plane passes through the point M (x,,,,z,), which is
defined by radius vector 7;, and it is coplanar to two direction vectors p,, p,
(Fig.11.2). Parameters ¢, ¢, in equation (11.4) have the following geometric sense:
values ¢, t, are proportional to the distance between the given point M (x,,,,z,)
and the point M (x,y,z), which is defined by radius vector 7. If ¢, =¢, =0, then the
point M (x,y,z) coincides with the given point M (x,,y,,2,): 7 =7,. Increase of ¢,
(or t,) results in the shift of the point M (x, y,z) to the direction defined by vector p,

(or p,), and decrease of ¢, (or t,) — to the opposite direction.
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Direction vectors of a plane

z po=a-i+b-j+c-k

Figure 11.2
Parametric equation of a plane:

X=Xx,+a -1 +a,-1l,,
a b ¢
y=y,+b-t,+b,-t,, t,l,eR, rg[ 5 ]:2. (11.5)

a c
2 2 2
z=z,+¢ 1l +c, 1, ,

Way of representation: plane passes through the point M (x,,y,,z,) and it is

coplanar to  two  noncollinear  vectors  p,=a,-i +h-j+c¢ -k  and
py=a,-1+b,-j+c,-k (Fig.11.2).

Geometric sense of coefficients: a,,b,c, and a,,b,,c, are coordinates of
direction vectors p,=a,-1 +b,-j +¢,-k, p,=a,-i +b,-j + +c, -k ,and x,, ,, z,
are coordinates of the point M, (x,,¥,,z,), which belongs to the plane. Parameters
1, 1, have the same sense as in equation (11.4).

Note that the equation (11.5) is a coordinate form of the equation (11.4).
Equation of a plane, which passes through the given point and is coplanar to

two noncollinear vectors:

X=Xy VY= 272 a b c
a, b, ¢ |=0, rg[ . 1]:2. (11.6)
a2 bz CZ

Way of plane representation and geometric sense of coefficients in equation

(11.6) are the same as in equation (11.5). Conditions [p,,p,]#0 1n (11.4) and
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a b c
rg[ : bl lj =2 in (11.5), (11.6) denominate noncollinearity property of vectors
a, b, G

p, and p,.
Affine equation of a plane, which passes through the given three points:
r=(1-t,—t,) 7 +t,-7,+t,+7,, 1,1,eR. (11.7)
Equation (11.7) can be rewritten in coordinate form:
x=(1—-t,—1,)-x,+1,-x,+1t,-x,,
y=(1-t,=t,)-y,+t,-y,+t,-y,, I,,eR. (11.8)
z=(1-t,=t,) -z, +t, -z, +t,- 2,

Way of representation: plane passes through the three given points
M (%4, Y9-2,)> M (x,¥,,2,), M,(x,,¥,,2,), which are defined by radius vectors 7,
7 and 7, accordingly (Fig.11.3, a). Radius vector 7 defines the position of point
M (x,y,z), which belongs to the plane.

Geometric sense of coefficients: X,,¥,,Zy> X1 Y12,5 X5, ¥,,2, — coordinates of
points M (x,,¥,.2,), M(x,¥,,2), M,(x,,¥,,z,), through which the plane (11.8)
passes. Parameters ¢,, ¢, in equation (11.7) define the position of point M (x,y,z),
which belongs to the plane, e.g. if £, =0, ¢,=1, then M coincides with A,, and 1f
th=1,1,=0—-with M,.

Equation of a plane, which passes through three given points:

X=X M=o 2172

X% =W 47% B B _
Xo=Xg Vo= Vo 2272

X=X, Y-y, Z-2
=0, rg{
Xo=Xo Vo= Vo 2,72

]:2. (11.9)

Way of plane representation and geometric sense of coefficients in equation
(11.9) are the same as in equation (11.8).

Intercept equation of a plane:

22Xy Z21, 520, 9,20, z,#0. (11.10)
XN 4
Way of representation: plane passes through three given points X,(x,,0,0),
Y(0,»,,0) m Z,(0,0,z,),and x, #0, y, #0, z; #0 (Fig. 11.3, b).
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Geometric sense of coefficients: plane (11.10) cuts off "segments" on

coordinate axes: x, on abscissa axis, y, on ordinate axis, z; on applicate axis.

Ways of Equation Type Transformation

1. To transform general equation of a plane (11.1) into normalized equation

(11.3) it is sufficient to divide both parts of general equation by the length of normal

7| = \/ A*+ B*+C?* (if constant term is negative D <0) or by opposite quantity

—|7|==- \/A2 + B*+C? (if constant term is nonnegative D >0).

2. To transform general equation of a plane (11.1) to parametric equation
(11.5) it is necessary to make the following steps:

1) find any solution (x,,5,,z,) of equation A-x+ B-y+C-z+ D=0, defining
the coordinates of a point M (x,,Y,,z,), which belongs to the plane;

2)find any two linearly independent solutions (a,,b,,c), (a,,b,,c,) of
homogeneous equation A-a+ B-b+(C-c=0, defining the coordinates a,,b,,c, and
a,,b,,c, of direction vectors p; and p, of the plane;

3) write parametric equation (11.5).
3. To transform parametric equation into general, it is sufficient to write the
equation (11.6) and expand the determinant or to find normal as the outer product of

direction vectors (Section 8.5):

i ] k
b, ¢| = |a ¢| = |a bl -
n=[p.0,]=|q | 1 b J b >
) a, ¢ a, b,
a2 b2 Cz \ Y / \ E / T

and write general equation of a plane in a form (11.2):
A (x=x)+B-(y=y)+C-(z-2)=0.
4. Transformation of general equation of a plane (11.1) into intercept equation
(11.10) is possible if all coefficients of general equation are nonzero. To do this

transformation it is necessary to transfer constant term to the right part of equation:

A-x+B-y+C-z=-D and then divide both parts of equation by -D:
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4
-D

B C

. D D
AR

-z=1. Denoting X == W=g le—%, we will get

X+
intercept equation (11.10); X +X 4+ Z -1

pt eq (11.10) Tyt

Example 11.2. In coordinate space Oxyz (in Cartesian coordinate system) the
following points are given: K (2,3,4), L(6,-3,4), M (-4, 6,—4). Find:

a) general equation of a plane, which contains triangle K/.M ;
b) intercept equation of triangle KM plane;
c) points of plane and coordinate axes intersection.

O a) Compose the equation (11.9):

x-2 y=-3 z-4 x=2 y-3 z-4
6-2 -3-3 4-4|=0 < 4 —6 0 |=0.
—4-2 6-3 -4-4 —6 3 -8

By the determinant expansion and similar term simplification we get
48-(x—2)+32-(y—3)—24-(z—4)=0 < 6-x+4-y-3-z-12=0.
b) By transferring the constant term of general equation to its right part and

dividing by 12: §+ % + =1 we have obtained intercept equation.

c) By the intercept equation we find that the plane passes through the following
points: X (2,0,0), ¥(0,3,0), Z(0,0,—4) on coordinate axes. B

11.1.2. Planes Positional Relationships

Consider two planes m, and m,, which are defined by the following general

equations:
. A-x+B-y+C-z+D =0, m,: A -x+B,-y+C,-z+D,=0.
Information about plane positional relationship can be obtained from the
coefficients in their equations by the following criteria of:
e plane parallelism:
Bl

Cl Dl
= =—F—
Bz Cz Dz

A
AZ
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plane equality:

A_B_G_D
AZ BZ C2 DZ ’
o plane parallelism or equality:
Al Bl Cl
rg =1
AZ BZ CZ
e plane intersection:
Al Bl Cl
rg =2,
AZ BZ C2

plane perpendicularity:
A-4,+B-B,+C -C,=0.
If planes intersect, then the coordinates of their common points can be found as
the solution of the following system of equations:

{Al-x+Bl-y+Cl-z+D1=O,

A x+B,-y+C,-z+ D, =0.
This system has an infinite number of solutions, which form the plane intersection
line.
Example 11.3. Describe the positional relationship of each pair of planes
(intersection, parallelism, equality, perpendicularity):
a) 2:x—y—-4-z+3=0, -4-x+2-y+8.-z—-6=0;

b) 2:x+3-y+z-6=0, 4-x+6-y+2-z+3=0;

¢) 3-x-2-y+z+1=0, 4-x+5-y-2.-z2-1=0;

d) 3-x-2-y+z+1=0, 4-x+5-y+2.-z—-1=0,

then

O a) Since 4, =2, B=-1, C,=-4, D=3, 4,=-4, B,=2, C,=8, D,=-6 and

Cl___4__1 i— l
D, -6 2

B

hadl D,
BZ

- >

c, 8 2

__—4:

>

1
2 2

>

1 l_Dl

1 o
TR Hence, these planes coincide (they are equal).

[\S]
[\S]



b) Since 4, =2,B,=3,C, =1, =—-6,4,=4,8,=6,(,=2,D,=3 and %Z%,
B 1 1
—1=—,i=—,&=—2,then i=£=Q;t&.Hence,planesareparallel.
BZ 2 CZ 2 2 AZ BZ 2 2
¢) Since 4 =3, B =-2, C,=1, D=1, 4,=4, B,=5, C,=-2, D,=-1,
4 B C( 3 =2 1 : .
then rg =T1g =2 . Hence, planes intersect. Since 4, - 4, +
A, B, C, 4 5 =2

+B,-B,+C;-C,=3-44(-2)-5 +1-(-2) =0, then planes are perpendicular.
d) Since 4, =3, B=-2, C,=1, D =1, 4,=4, B,=5, C,=2, D,=-1, 10

4 A G S22 o lanes intersect. Si BB
r =T =4. €nce, anes 1mtersect. dince . + b, - +
g A2 BZ C2 g 4 5 2 p Al AZ 1 2

+C,-C,=3-4+(-2)-5+1-2=4 %0, then planes are not perpendicular. B

11.1.3. Metric Applications of Plane Equations

Let’s list formulas for segment lengths (distances) and values of angles
calculation by equations of their forming planes.
Angle between two planes can be determined as angle between their normal

vectors (on Fig. 11.3 normal vectors of planes m, and m, are denoted by 7, 7,

accordingly). By this definition we have two adjacent supplementary angles, which
complement each other to 7. In elementary geometry usually the smallest angle 1s

chosen from two adjacent angles, i.c. value of angle ¢ between two planes satisty the

following condition 0 < ¢ < %

Figure 11.3
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1. Distance d between point M (x*,y*,z") and plane A-x+B-y+
+C - z+ D =0 is calculated by the following formula (Fig. 11.4, a)
p |A-x*+B-y*+C-z*+D|
\/AZ +B*+C? '

Ay x+ By y+Cyrz+D,=0

zJ IM*(x*,y*,z*)
d ! sz(xzayzazz) y
1 )| e —
/ I — z. Sy "Z
;0 y /}l
A x+ B y+Crzf D=0

*x/ Ax+By+Cz+D=0 x —
a b

Figure 11.4
2. Distance between parallel planes 4, -x+B-y+C-z+D;=0 and

Ay -x+B,-y+C,-z+D,=0 is calculated as distance d;, between point
M ,(x,,¥,,2,), which coordinates satisfy the equation 4,-x+B,-y+C,-z+ D, =0,
and plane 4, -x+ B, y+C,-z+ D, =0 by the following formula (Fig. 11.4, b)
_ |4 %, +B -y, +C -z, + D |

\/ A+ Bl +C] '

dl

3. Acute angle ¢ between two planes
n:. A-x+B-y+C-z+D =0 and =w,: 4, -x+B,-y+C,-z+D,=0
is calculated by the following formula
| 4,- A4, +B,-B,+C,-C, |
\[A12+Bf+C12 -\/AZZ+B§+C22 ’

cosp =

where 7, =4 -1 +B,-7+C,-k and ii,=A,-7 +B,- ] +C,-k are normals to planes
n, and 7, accordingly (Fig. 11.5).
Example 11.4. In coordinate space Oxyz the following vertexes of triangle

pyramid OABC are given: 4(1,3,—1), B(2,1,-2), C(4,2,-6). Find:
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a) general equation of a plane, which contains side 4BC
b) distance d between vertex C and side OAB
¢) value of angle ¢ between sides ABC and OAB.

O a) By formula (11.9) compose equation of the plane = ,,., which passes through

x-1 y-3 z—(-1) x—1 y-3 z+1
points A,B,C:[2-1 1-3 —2-(-1)[=0 < | 1 =2 -1|=o0.
4-1 2-3 —6-(-1) 3 -1 -5

Expanding the determinant by the first row we get
9-(x-1)+2-(y-3)+5-(z+1)=0 & 9-x+2-y+5-2-10=0.

The required equation is obtained.
b) To find distance d we compose equation of the plane, which passes through

points O, A,B:
x-0 y-0 z-0 Xy z
-0 3-0 -1-0|=0 & |1 3 -1|=0 < x+z=0.
2-0 1-0 -2-0 2 1 =2

By the first formula of metric applications for M* =C we have:
|1 4+0-2+1-(-6)+0|

JP+07 412 J_ =2

c) Acute angle ¢ between planes 9-x+2-y+5-z2-10=0 and x+2z=0 1s

found by the third formula of metric applications:

9-1+2-0+5-1 14
cosQp =
JOT+22 457 1P 4+02 412 220 \/_5

7
Consequently, ¢ =arccos——. &
1 \55

11.2. LINES IN SPACE
11.2.1. Main Types of Line Equations in Space

Direction vector of line is a nonzero vector, which is collinear to the given

line, i.e. this vector belongs or is parallel to the line. Two lines are called collinear, it

they are parallel or coincident.
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General equation of a line in space:

{Al-x+Bl-y+Cl-z+D1=O, [Al B, Cl]
rg =2.

(11.11)
Ay -x+B,-y+C,-z+ D, =0, A, B, C,

Line direction vector
Normal of plane =, : _ — — —
_ p=a-i+b-j+c-k

m=A,-i +B, J+C,-k

'/

MO(XO:yO:Zo)

Figure 11.5

Way of representation: line is defined as an intersection line between two
planes (Fig.11.5, a):
n: A-x+B-y+C -z+D, =0; n,. A, -x+B,-y+C,-z+D,=0.
Geometric sense of coefficients: A, B,, C, and A4,, B,, C, are coordinates of
normals 7, = A4,-7i +B,-j +C,-k and i, = A,-7 + B, j +C,-k of planes n, and =,
accordingly. The equality of matrix rang to two in (11.11) denominates the condition

of noncollinearity of normals (it equivalent to the plane intersection condition,
Section 11.1.2).

Vector parametric equation of a line in space:
r=r+t-p, teR, p#0. (11.12)

Way of representation: line passes through the point M,(x,,y,,z,), which 1s
defined by radius vector 7, and is collinear to direction vector p =0 (Fig.11.5, b).

Geometric sense of parameter t in equation (11.12): value of ¢ 1s proportional

to the distance between initial point M, and point M , which is determined by radius
vector 7.
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Physical sense of parameter t : it denotes time of uniform rectilinear motion of

point M . If t =0, then pomnt M coincides with the initial point A/, increase of ¢
denominates motion with the direction defined by vector 7.

Parametric equation of a line in space:

x=x,+a-t,
y=y,+b-t, teR, a*+b*+c*#0. (11.13)
z=z,+cC-1,

Way of representation: line passes through the pomnt M (x,,y,,z,) and is
collinear to vector p=a-7 +b-j +c-k (Fig. 11.7, b).

Geometric sense of coefficients: coefficients a,b,c are coordinates of direction
vector p=a-i +b-j+c-k of a line and x,, y,, z, are coordinates of the point
My (x,,¥,,2,), which belongs to the line. Parameter ¢ has the same meaning as in
equation (11.12).

Note that the equation (11.13) is a coordinate form of the equation (11.12).

Canonical equation of a line in space:

S W P k! Sy S oy} (11.14)
a b c

Way of representation: line passes through the point M (x,,,,z,) and it is
collinear to vector p=a-i +b-j +c-k (Fig. 11.7, b).

Geometric sense of coefficients: coefficients a,b,c are coordinates of direction
vector p=a-i +b-j+c-k of a line and x,, y,, z, are coordinates of the point
M y(xy,¥,y-2,), which belongs to the line. Parameter ¢ has the same meaning as in

previous equations (11.12), (11.13).
One or two from three denominators of fractions in (11.14) can be equal to

zero, at that 1t is considered that the according numerator is equal to zero, e.g:

a) x;)xo =2 ;)y 0_Z"% _ equations of a line, which is parallel to the
c

X=X,

applicate axis (Fig. 11.6, a), i.e. {
Y=Y
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b) T YT h _ZT5H equation of a line, which is parallel to coordinate

a b
z=12z,,
plane Oxy (Fig. 11.6, b),1.e. { y— _ V=W
a b
; P=0-T+0-T+ck N M (x,,z)
l ZO‘ p:w] +0-k r 7 Ml(x17y1=zl)
/4\/ B M (%0, Y02,)
x, 1O o P
y

/) Y xO N

Figure 11.6
Affine equation of a line, which passes through two given points, in space:
r=(01-1)-1,+t-7, tekR. (11.15)
Equation (11.15) can be written in coordinate form:
x=(1-1t)-x,+t-x,,

y=1-t)-y,+t-y, teR.
z=(1-1)-zy+t -z,

Way of representation: line passes through two given points M (x,,y,,z,) and
M,(x,,¥,,2;), which are defined by two radius vectors 7, and 7 accordingly
(Fig.11.6, ¢). Radius vector 7 defines the location of point M (x, y,z), which

belongs to the line.

Geometric sense of coefficients: x,,y,,z, and Xx,,y,,z, are coordinates of
points M, (x,,v,,2,) and M,(x,,¥,,z), through which the line passes (11.15).
Parameter ¢ in equation (11.15) defines the location of point M (x,y,z), which
belongs to the line, e.g. if #=0 then point M coincides with the point M, (7 =7,),
and if ¢t =1 — with the point M, (7 =7).

Equation of a line, which passes through two given points M (x,,¥,,2,) and
M, (x,,y:,2,) inspace:
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=N YN ETA (11.16)
=% N—N Z1—2%
Way of representation: line passes through two given points M (x,,¥,,z,) and

M, (x,y,,z) (Fig.11.6, ¢).

Geometric sense of coefficients: x,,¥,,z, and x,,y,,z are coordinates of
points M (x,,¥,,z,) and M,(x,,¥,,z,), through which the line passes (11.16). As in

canonical equation, one or two from three denominators of fractions in (11.16) can be

equal to zero, at that it is considered that the according numerator is equal to zero.
Ways of Equation Type Transformation

1. To transform general equation of a line in space (11.11) into canonical
equation (11.14) it is necessary to make the following steps:

A-x+B-y+C-z+D, =0,

1) find any solution (x,,v,,z, ) of the system
) y (%0:30:2) Y {Az-x+Bz-y+C2-z+D2=0,

thus defining coordinates of point M, (x,, ¥,.,Z, ), which belongs to the line;

2) find any nonzero solution (a, b,c) of homogeneous system

A-a+B-b+C -c=0, . , . —

thus defining coordinates a,b,c of direction vector p, or

A, -a+B,-b+C,-c=0,

find direction vector p as outer product of normals 7,=4-7 +B,-j+C, -k,
m,=A,-i +B,-j+C,-k of given planes:

i

S
&~
0 =

p=[n,m,]=a-i +b-j+c-k =

EN
=
P

3) write canonical equation (11.14).
2. To transform canonical equation into general one, it is sufficient to write the

double equality (11.14) as a system

X=X% _Y=X
a b ’

and reduce similar terms.
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3. To transform canonical equation (11.14) into parametric equation (11.13), it
is necessary to equate each fraction in equation (11.14) to parameter ¢ and write
obtained equalities as a system (11.13):

X=x,+a-t,

x—x():y_y():Z—Z():t = y:y0+b't: treR.

a b C

z=zy+cC-1,
Example 11.5. In coordinate space Ox)z the following vertexes of triangle are
given: 4(1,2,3), B(3,0,2), C(7,4,6) (fig.11.7). Find:
a) general equation of a line, which contains altitude 4H of triangle;
b) canonical equation of a line, which contains altitude AH of triangle;

c) general equation of a line, which contains bisectrix AL of triangle;

d) parametric equation of a line, which contains median AM of triangle.

Figure 11.7

O a) Line AH 1is an intersection line of two planes: =, of triangle ABC and =,,
which passes through the point 4 and which is perpendicular to vector BC
(Fig.11.7, a). By the formula (11.9) compose the equation of the plane =, which

passes through the points 4,B,C':
y=-2 z=-3| [x-1 y-2 z-3
-2 2-3|=| 2 -2 -11=0 & x+3-y—4-z+5=0.

x-1
3-1 0
7-1 4-2 6-3 6 2 3

By the formula (11.2) compose the equation of the plane w,, which passes through

the point A and which 18 perpendicular to vector

BC=(7-3)-T+(4-0)-7+(6-2)k==4-T+4-T+4-k:
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4-(x-1)+4-(y-2)+4-(z-3)=0 < x+y+z-6=0.
Consequently, general equation (11.11) of the line AH has the following view:

x+3-y—4-z+5=0,
xX+y+z—-6=0.

b) General equation a the line AH was obtained in "a". To transform general

equation into canonical one it is necessary to:

e find any solution (x,,y,,z,) of the system, e.g. x,=1, y,=2, z,=3

2

(coordinates of the vertex A4(1,2,3));

e find direction vector p of the line as outer product of normals

m=17+3-7-4-k,n,=1-7 +1-7 +1-k of the given planes:

i j k
p=[n.n,]=|1 3 —4|=7-T-5-7-2-k;
1 1 1

e write canonical equation (11.14): -1 =2 _52 =2z _23 :

c) First compose canonical equation of the line AL . To do this we should find

direction vector / of this line (Fig. 11.7, ). Taking into account, that diagonal of
rhombus is a bisectrix, we get / =b +¢, where b and T are unit vectors with the

same direction as vectors AB and AC accordingly. Find

AB=2.T-2-T-1k, |E\=3, i?:ﬁ

32 3
21 21 21

Writing double equality as a system, we get general equation of the line AL:
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x-1_ y-2

5 -7 x+4-y-9=0,
=

y-2 z-3 y+4-2-14=0.

-3 % 7

d) Find coordinates of the middle point A/ of BC: M (5,2,4). Compose

equation (11.16) of the line AM (Fig.11.7, ¢):
x—lzy—2zz—3 - x—lzy—2zz—3‘
5-1 2-2 4-3 4 0 1

Transfer the obtained equation into parametric one, by equating each fraction

to parameter ¢ :

. 5 ; x=1+4-¢,
4 0 1
z=3+1-¢,

11.2.2. Positional Relationships of Lines in Space

Consider two lines /, and /, specified by their canonical equations:

l.x_xl_y_y1_z_21 Z_X—xz_y—yz_z—zz
1 - > 2 - -

a, b, ¢ a, b, ¢,

>

where x,,y,,z and x,,y,,z, are coordinates of points M (x,y,,z) and

M ,(x,,y,,2,), which belong to lines /; and /, accordingly; a,,b,,¢, and a,,b,,c, are

coordinates of direction vectors p,=a,-i +b,-j +¢,-k and p,=a,-i +b,-j +c,-k

of these lines (Fig. 11.8).

ﬁ" p/ ZMO ﬁ..i Zl/lo / ﬁ" \\17
A s S L

Figure 11.8
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Information about line positional relationship can be obtained from the number
of linearly independent rows of matrix
X=Xy W= 474

a, b, ¢ |, (11.17)

and by the following criteria:

e skew lines:

e parallel lines:

rg[al b, 61]:1 and rg(xl_xz =W 21_22]:2;
a, b, ¢, a, b, G

e equal lines:

e collinear lines:

e intersecting lines:
X=Xy N—=h 474
a b ¢
gl g b, ¢ |=1g =2;
a

e perpendicular lines:

a,-a,+b-b,+c-c,=0.

If lines intersect, then the coordinates of intersection point can be found as the

solution of the following system of equations:
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X=X _Y=h_z2-4
a, b, q

X=X, V=W 272
d, b, %)

Example 11.6. Find information about positional relationship of each pair of
lines (are they skew, intersecting, parallel, equal, perpendicular, if they are

intersecting find their mutual point):

2) x-=1 y=-2 z-3 x+1 y-1 z+2
2 -3 4 7 4 0 -2’

b) x-1_ y-2 z-3 x+1 y-1 z+2,
2 -3 4 ° -4 6 -8’

o) x-3 y+2 z-7 x+3 y-T7 z+5,
2 -3 4~ -4 6 -8’

d) x=3 y+2 z-7 x-2 y+2 z-5
2 -3 4 5 —6 10

O a) By the coefficients of line equations we compose the matrix (11.17):

X=X, V-V, 2Z,—2Z, 1-(-1) 2-1 3-(=2) 2 1 5

a, b, ¢, |= 2 -3 4 =12 -3 4.
a, b, c, 4 0 -2 4 0 =2
2 1 5
Since rg|2 -3 4 |=3, the given lines are skew. As
4 0 -2

a-a,+b-b,+c -c,=2-4+(-3)-0+4-(-2)=0, they are perpendicular.
b) By the coefficients of line equations we compose the matrix (11.17):

X=X, V=V, Z—Z, I-(-1) 2-1 3-(=2) 2 1 5

a b, G = 2 -3 4 =2 =3 4|
d, b, ) —4 6 -8 -4 6 -8
b 2 =3 4 X, — — _
Since rg G ha =rg —1 and rg 1 =X N =V, 41— Z, _
a, b, ¢, -4 6 -8 a, b, ¢,

2 1 5
rg[2 3 4) =2, the lines are parallel.
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¢) By the coefficients of line equations we compose the matrix (11.17):

X=X, V-V, Z—Z, 3-(-3) 2-7 7-(-5) 6 -9 12

a b, ¢ |= 2 -3 4 =2 -3 4
a, b, c, -4 6 -8 -4 6 -8
6 -9 12
Since rg| 2 -3 4 |=1, the lines are equal.
-4 6 -8

d) By the coefficients of line equations we compose the matrix (11.17):

X=X, V=V, Z,—Z, 3-2 -2-(=2) 7-5 1 0 2

a, b, ¢ |=| 2 -3 4 |={2 -3 4
a, b, c, 5 -6 10 5 -6 10
Lo 2 -3 4

Since rg|2 -3 4 |=rg [5 6 10] =2, the lines intersect. Find the coordinates
5 -6 10

of intersection point as the solution of the system:

x-3 y+2 z-7 -3-x+9=2-y+4, 3-x+2-y=5,

> 3 4 4.-y+8=-3.z+21, 4.y+3.2=13,
~ = 3

xX=2 y+2 z-35 —6-x+12=5-y+10, 6-x+5-y=2,

5 -6 10 ° [10-y+20=-6-2+30, | 5-y+3-2=5.

Subtracting the second equation from the last one we obtain y=-8. Substituting
y=-8 in the first two equations we find x=7, z=15. Hence, the only common

point of the lines has coordinates x=7, y=-8, z=15. 1

11.2.3. Positional Relationships of Line and Plane

Consider line / and plane 7 specified by the following equations:

l x_.x():y_by()=Z_Z(); T A,x+By+C.Z+D=O’
a C

i.e. line / passes through the point M (x,,),,Z,) and is collinear to vector

Pp=a-i+b-j+c-k and plane w is perpendicular to vector 7=A-i +
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+B-7 +C-k (Fig. 11.9). Information about positional relationship of line and plane
can be obtained from scalar product of vectors (7,7)=a-A+b-B+c-C and by the
following criteria:

n

P / 7 .
. M, )
ﬂf /."‘/ﬂi m / T - Z\MO/

a b c

Figure 11.9
o intersection of aline / and a plane © (Fig. 11.9, a):
a-A+b-B+c-C=#0;

e perpendicularity of a line / and a plane 7:

a b c i
r =1;
4 B )
e parallelism of a line /and a plane = (Fig. 11.9, b):

a-A+b-B+c-C=0,
A-xy+B-y,+C-z,+D=#0;

e helonging of aline / to a plane = (Fig. 11.9, ¢):

a-A+b-B+c-C=0,
A-xy+B-y,+C-z,+D=0.

In case of intersection it is convenient to use parametric equation of a line to

find coordinates of a common point. Substituting the following expressions
x=xy+a-t, y=y,+b-t, z=z,+c-t (11.18)
in equation of a plane 4-x+ B-y+C-z+ D=0, it 1s possible to calculate value of
parameter ¢ for intersection point, and then the coordinates of the required point by

formula (11.18) assuming ¢ =¢".

210



Example 11.7. Get information about positional relationship of each pair of
line and plane (are they intersecting, perpendicular, parallel, if the line belongs to a
plane, in case of intersection find mutual point):

x-=1 y-2 z+3

a) , 2:x+43-y+4-z+4=0;
1 =6

by 2L_YT2_ %3 s idize1=0:
1 =6

c) x—1=y—2=z+3’ 2. x+3-y+4-z-5=0;
1 3
- 2

g XL Yr2 _IH3 s 6 y_8.z414=0.

1 -3 —4
O a) By the coefficients in equations define a=1, b=-6, c=4, x,=1, y,=2,
z,==3,A4=2,B=3,C=4, D=4 Since
{ a-A+b-B+c-C=0, - { 1-2+(=6)-3+4-4=0,
A-xy+B-y,+C-z,+ D=0, 2-1+3-2+4-(-3)+4=0,
the line belongs to the plane.
b) By the coefficients in equations define a=1, b=-6, c=4, x,=1, y,=2,
z,=—3,4=2,B=3,C=4, D=1. Since

{ a-A+b-B+c-C=0, { 1:2+(=6)-3+4-4=0,
Rem

A-xy+B-y,+C-z,+ D#0, 2-143-2+4-(-3)+1=0,

the line is parallel to the plane.
c¢) By the coefficients in equations define a=1, b=-3, c=4, x,=1, y,=2,

z,=-3,A=2,B=3,C=4, D=-5. Since

a-A+b-B+c-C#0 < 1-2+(-3)-3+4-4=0,

1 -3 4
the line intersects the plane. Since rg{2 3 4] =2 #1, the line 1s not perpendicular

to the plane. Find the coordinates of intersection point. Substituting x=1+1-¢,
y=2-3-t, z=-3+4-1, n plane equation we get
2-1+1-0)+3-2-3-)+4-(-3+4-1)-5=0 < ¢ =1.
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Then, coordinates of the common point are x=1+1-1"=2, y=2-3.t"=-1,
z=-3+4.-t" =1.
d) By the coefficients in equations define a=1, b=-3, c=-4, x,=1,

Vo=—2,2,=-3,A=2,B=-6,C=-8, D=14. Since

" [1 -3 —4] _1
2 -6 -8 ’
the line is perpendicular to the plane. Find the coordinates of intersection point.
Substituting x=1+1-¢, y=-2-3-f, z=-3-4-¢t1in plane equation we get
2:(1+1:0)-6-(-2-3-1)-8-(-3-4-H)+14=0 < " =-1.
Then, coordinates of the common point are x=1+1-1'=0, y=-2-3-1"=1,
z=-3-4.r'=1.1

11.2.4. Metric Applications of Line Equations in Space

Angle between a line | and a plane w is defined as an angle between a line /

and its orthogonal projection /, . to a plane (Fig. 11.10, a). From two adjacent angles

¢ and ¢ usually chose the smallest one, i.e. 0<¢ s%. If line / is perpendicular to

plane (its orthogonal projection is a point), then angle equals to %

/l = / ll /
[ 1 l
-0 ! ¢ _
/(P(// [pmj/ /Ap2 / 7 12/
y T
7 " /

b C

Figure 11.10

Angle between lines is defined as an angle between their direction vectors
(Fig.11.10, b).
Distance between skew lines is the length of their mutual perpendicular

(Fig.11.10, ¢), i.e. the smallest distance between the points of these lines.
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1. Distance d from point M (x,,¥,,z,) to line Al PR
a c

(Fig.11.11, a) is calculated by the following formula

X

2
=V 21— 2

2
+

MO (XO:yO:Zo)

a

Figure 11.11

By this formula it 1s also possible to find distance between two parallel lines

X—X — z—z
0o _ Y~V _ 0 an
b c a, b,

a ¢

. b .
vectors are proportional: 4a_2_°< (Fig. 11.11, a).
al 1 cl

2. Distance d between skew lines (Fig. 11.11, b)

X=X V=W _274

X=X _Y=»n_z274 and

al bl B cl a2 bZ CZ
. . m: p > p
1s calculated by the following formula: d = w ,

[P,.7,]

X=X NN T4 [

where (7,p,.D,)=| « b, ¢ |#0, [p.D,]=|a b

a2 bZ CZ a2 bZ

compositional and outer products of  vectors mn=(x,—

+(V,=y)-J+(z,—z) -k, Pi=a,-T+b-]+c k,

X—Xx - z—z . .
d I L _coordinates of which direction

arc



3. Angle ¢ between two lines

X—X - zZ—z
1 =y yl — 1 and
a, b, ¢ a, b, c,

is calculated by the following formula
|a,-a,+b,-b,+¢ ¢, |

2 2 2 2 2 2
\/al +b +¢ -\/az+b2 +c,

OES

—X,_ V=Y _Z-Z
a b c

4. Angle ¢ Dbetween line and plane

A-x +B-y+C-z+ D=0 is calculated by the following formula
|a-A+b-B+c-C|
Ja+b+ct J A+ B CE

Example 11.8. In coordinate space Oxyz (in Cartesian coordinate system) the

sin@ =

following vertexes of triangle are given: 4(1,2,3), B(3,0,2), C(7,4,6) (Fig. 11.7).

Find:

a) equation of the line BC;

b) altitude A of the triangle, dropped to the side BC

¢) distance d from the line BC and the abscissa axis;

d) value of acute angle @ between these lines;

e) value of angle y between the abscissa axis and the plane of triangle ABC .
O a) Compose the equation (11.16) of a line, which passes through the points
B(3,0,2), C(7,4,6):

x—3:y—O:Z—2 - x—3=X: - _
7-3 4-0 6-2 4

N
I
[u—

b) Required altitude / is found by the first formula of metric applications,

assuming x, =3, y,=0, z,=2, x,=1, =2,z =3,a=b=c=1:

J‘—z 2
i

2 2 2

2 1 |2 1
IR CJ16+1+9 |26
VAT NN
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c¢) Canonical equation of the abscissa axis has the following form %z%: % ,

since the axis passes through the point O(0,0,0), and i is its direction vector.

Canonical equation of the line BC was obtained in "a": x ; 3 = % . I 2 .

Assuming iﬁ=@=(3—0)-7+(0—0)-7+(2—O)-l?=3-7+0-7+2-1?, p=1-i+

+0-7+0-k, p,=1-7 +1-7 +1-k , by the second formula of metric applications:

0 i Tk
(#,p,,b,)=|1 0 0|=2, [P.P,]=[1 0 0[=0-7T-1-F+1k,
1 1 1 1 1
4 |0.P. Do) _ 3

15, 7,]| J02+( 12 +12

d) Acute angle ¢ is obtained by the third formula of metric applications:

(7.7 [1-1+0-1+0-1] 1

B T A BV e Y S RN R B )

¢) Equation of a plane =, which passes through the points 4,B,C, was

obtained in example 11.5 "a": x+3-y—4-z+5=0. Acute angle y between the

abscissa axis %: % =§ and the plane x+3-y—4-z+5=0 is obtained by the fourth

formula of metric applications:

la-A+b-B+c-C| [1-1+0-3+0-(-4)| 1
\/a +b* + -\/X+BZ+C2 \[12+02+O2 \/12+32+( 4)? 26’

siny =

1.€. \uza:rcst_. L
26
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11.3. QUADRIC SURFACES
11.3.1. Classification of Quadric Surfaces

Algebraic surface of the second order (quadric surface) is a locus of points in

space, which can be represented in some affine coordinate system Oxyz by the

following equation
a X+, Y a2 +2-a, X y+2-ay X Z2+20y Y2+
+2-a,-x+2-a,-y+2-a,-z+a, =0,

where the leading coefficients a,,, a,,, a5, a,,, a,, a,, are not all equal to zero

simultaneously. For any quadric surface there exists a rectangular coordinate system

Oxyz , in which the equation has the simplest (canonical) view. This system is called

canonical, and equation is also called canonical.

Canonical Equations of Quadric Surfaces

¥ty 2 . : z
1) —+=—+—=1 —ellipsoid equation;
) at b P a
2 2 2
Xy oz : : . :
2) =+ e +— = —1 — imaginary ellipsoid equation;
a c
2 2 2
3) x_2 + y—2 + Z—2 =0 — imaginary cone equation;
a- b” ¢
52 yz o .
4) —+ Pl 1 — one-sheet hyperboloid equation; -
a c % b2
- y
x2 y2 Z2 ZA
5) —=+———=-1 — two-sheet hyperboloid equation; z
) a2 b2 CZ yp q 5 >
2 2 2 z
Xy oz :
6) — +———=0 - cone equation,
) a2 b2 CZ q N
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2
X

2
7) —+ Z—Z = 2.z — elliptic paraboloid equation;
a
X2 y2
8) —— v 2 -z —hyperbolic paraboloid equation;
a

2
X
T2

2
9) —+ Z—Z =1 — elliptic cylinder equation;
a

2 2
10) % + Z—Z =—1 —1imaginary elliptic cylinder equation;

2 2

11) % + Z_Z =0 — pair of imaginary planes equation;

X2 y2
12) T 1 — hyperbolic cylinder equation;

2 2
X

13 = Z_Z =0 — pair of intersecting planes equation;
14) y*=2- p-x —parabolic cylinder equation;

15) y* —b* =0 — pair of parallel planes equation;

16) y* +b* = 0— pair of imaginary parallel planes equation;

17) y* =0 — pair of equal planes equation.

&

3
x ’:b?" >
- Y

/

=y

[N

A

Al
\

f—————-
=

\

LT R ¥

A)
\

A
\
-
\

b

In equations a >0, 5>0, ¢>0, p>0 and a>b >c in equations 1-3; a>»b in

equations 4-7, 9—-11.
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11.3.2. Ellipsoids

Ellipsoid is a surface, which is defined in some rectangular coordinate system

Oxyz by the following canonical equation

2 2
X

7+

+=1, (11.19)

2
4
2

)

Q
(9

where a, b,c are positive parameters, which satisfy the inequalities a>b>c.

If a point M (x,y,z) belongs to an ellipsoid (11.19), then coordinates
(ix,i y,x z) for any combination of signs also satisfy the equation (11.19). It is the

reason why ellipsoid is symmetric relative to coordinate planes, coordinate axes and
the coordinate origin. The origin of coordinates is called a center of ellipsoid. Six

points (+a,0,0), (0,%5,0), (0,0,+¢) of intersection of ellipsoid and coordinate

axes are called its vertexes, and three segments of coordinate axes, which connect its
vertexes are called axes of ellipsoid. Axes of ellipsoid, which belong to coordinate

axes Ox, Oy, Oz, have lengths 2-a,2-b,2-c accordingly. If a>b>c, then the

number a is called semi-major axis, number b — semi-mean axis, number ¢ — semi-
minor axis of ellipsoid. If semi-axes do not satisfy the conditions a>b > c, then the
equations (11.19) are not canonical. However, by renaming of the unknowns it 1s
always possible to make the inequalities @ >b > ¢ correct.

Plane sections give an opportunity to get a rough idea about the form of an

ellipsoid (Fig. 11.12, a). , e.g. assuming z=0 in equation (11.19), we get the

2 2
equation x_2+2/_2 =1 of an intersection line of ellipsoid and coordinate plane Oxy .
a

This equation on plane Oxy defines an ellipse (Section 10.2.2). Intersection lines of

ellipsoid with other coordinate planes are also ellipses. They are called the principal
profiles (principal ellipses) of ellipsoid.

Planes x=zxa, y=#xb, z=xc define in space principal rectangular

parallelepiped, inside which an ellipsoid is situated (Fig. 11.12, b). Sides of the

parallelepiped touch ellipsoid in its vertexes.
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Al L5

’_l_____ _:,|’_’ +
’,

Figure 11.12

Ellipsoid, which semi-axes are pairwise different (a>b >c), is called three-
axial (or general). Ellipsoid with two equal semi-axes is called ellipsoid of
revolution, ¢.g. if a=>5, then such surface can be obtained by the rotation of ellipse

2 2
Z—2+Z—2=1 (which is defined in plane Oyz) around axis Oz. If all semi-axes of

c
ellipsoid are equal (a=b=c=R), then it represents a sphere x* +y’+z*>=R> of

radius R.

11.3.3. Hyperboloids

One-sheet hyperboloid is a surface, which is defined in some Cartesian

coordinate system Oxyz by the following canonical equation

X2 2 Z2
?Jr_ZT_Z:l, (11.20)

e

Two-sheet hyperboloid is a surface, which is defined in some Cartesian
coordinate system Oxyz by the following canonical equations
2 2 2
Xy oz
?Jr?__?:_l_ (11.21)
In equations (11.20), (11.21) a, b,c are positive parameters (a =b), which
specify hyperboloid.
The origin of coordinates is called center of hyperboloid. Points of intersection
of hyperboloid and coordinate axes are called its vertexes. These are four points of
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intersection (£a,0,0), (0,£5,0) for one-sheet hyperboloid (11.20) and two points
(0,0,+c¢) for two-sheet hyperboloid (11.21). Three segments of coordinate axes,

which connect hyperboloid vertexes are called axes of hyperboloid. Hyperboloid

axes, which belong to coordinate axes Ox,Qy, are called lateral axes of

hyperboloids, and axis, which belongs to applicate axis Oz, — longitudinal axis of
hyperboloid. Numbers a, b, ¢, which are equal to a half of axis length, are called
semi-axes of hyperboloid.

Plane sections give an opportunity to get a rough idea about the form of an
one-sheet hyperboloid, e¢.g. assuming z=0 in equation (11.20), we get equation

2 2

x_2+%:1 of an intersection line of one-sheet hyperboloid and coordinate plane
a
Oxy. This equation on plane Oxy defines ellipse (Section 10.2.2), which is called
throat ellipse. Intersection lines of a one-sheet hyperboloid and other coordinate

planes are hyperbolas. They are called principal hyperbolas, ¢.g. assuming x =0 we

2

2

get principal hyperbola %—Z—zﬂ and assuming y=0 - principal hyperbola
c

Xzl

at &

One-sheet hyperboloid can be expressed as a surface, that is formed by
ellipses, which vertexes are situated on principal hyperbolas (Fig. 11.13, a). Section
of one-sheet hyperboloid with a plane, which is parallel to applicate axis and which
has the only common point with the throat ellipse (i.e. which touches it), is a pair of

lines, which intersect in a tangency point, e.g. assuming x =+a in equation (11.20),

2 2
we get equation Z—Z —£-=0 of two intersection lines (Fig. 11.13, a).

c
Plane sections give an opportunity to get a rough idea about the form of an
two-sheet hyperboloid. Sections of a two-sheet hyperboloid with coordinate planes

Oyz and Oxz are hyperbolas (principal hyperbolas) and with planes, which are

parallel to the plane Oxy are ellipses. Two-sheet hyperboloid can be expressed as a
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surface, that is formed by ellipses, which vertexes lie on principal hyperbolas

(Fig.11.13, b).

Hyperbola

Ellipse

Figure 11.13

Planes x=xa, y=xb, z=zxc define in space principal rectangular
parallelepiped. Two sides (z = =¢) of parallelepiped touch two-sheet hyperboloid in

its vertexes (Fig. 11.13, ¢).
Hyperboloid with different latitude axes (a=b), is called three-axial (or
general). Hyperboloid with equal latitude axes (a=»b) is called hyperboloid of
revolution. One-sheet and two-sheet hyperboloids can be obtained by the rotation of
2 5 y2 2

hyperbola Z—Z —<-=1 or conjugate hyperbola i Z-=-1 accordingly around the

c c
axis Oz (Section 10.2.3).
11.3.4. Cones

Cone is a surface, which is defined in some Cartesian coordinate system Oxyz

by the following canonical equation

2

2 2
+%%-§7=o, (11.22)

Q.\)l =

where a, b,c are positive parameters (a > b .), which specify cone.
The origin of coordinates is called the center of cone (fig.11.14), point O —

vertex of cone (11.22), and any ray OM , which belongs to the cone, — its generator.
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Plane sections give an opportunity to get a rough idea about the form of a cone,

e.g. sections of a cone with coordinate planes Oxz, Oyz are pairs of intersecting

2 2 2
lines, which satisfy the planes equations - zZ 0 (for y=0) and )b/—z -Z-=0
c

2
a
(for x=0) accordingly. Sections of cone with planes parallel to the plane Oxy, are

e

ellipses. Cone can be expressed as a surface, that is formed by ellipses, which centers
lie on the applicate axis and which vertexes belong to coordinate planes Oxz and

Oyz (Fig. 11.14).

7 -
-
-

Ellipse

Figure 11.14

If a=>b, then all sections of cone by planes z=h (h#0) are circumference.
Such cone is called right circular cone. It can be obtained by the rotation of a line

<.

Y (generator) around the applicate axis.

z
11.3.5. Paraboloids

Elliptic paraboloid is a surface, which is determined in some Cartesian
coordinate system Oxyz by the following canonical equation
2

2
X
?+Z—2=2-z. (11.23)
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Hyperbolic paraboloid is a surface, which is defined in some Cartesian
coordinate system Oxyz by the following canonical equation

z—Z—Z—j=2-z. (11.24)
In equations (11.23), (11.24) a are b positive parameters (for elliptic
paraboloid a > b), which specify paraboloids.
The origin of coordinates is called a vertex of each paraboloid ((11.23) or
(11.24)).
Plane sections give an opportunity to get a rough idea about the form of an
elliptic paraboloid, e.g. plane Oxz intersects elliptic paraboloid (11.23) along the
52

line, which in this plane is given by equation =5 =2-z, which is equivalent to the
a

equationx”=2- p-z of parabola with focal parameter p =a’. Section of paraboloid

2

with plane Oyz is obtained by assuming x =0 in equation (11.23): %z 2-z. This

equation is equivalent to the equation y*=2-g-z of parabola with focal parameter
g =b?. These sections are called principal parabolas of elliptic paraboloid (11.23).
Sections of paraboloid with planes, which are parallel to plane Oxy, are ellipses.

Elliptic paraboloid can be expressed as a surface, which is formed by ellipses, which

vertexes lies on principal parabolas (Fig. 11.15, a).

Parabola

Figure 11.15
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Elliptic paraboloid with a =54 is called paraboloid of revolution. It can be
obtained by the rotation of parabola R*® (where g = a® = b*) around the axis O:z.

Plane sections give an opportunity to get a rough idea about the form of a

hyperbolic paraboloid, e.g. sections of hyperbolic paraboloid with coordinate planes

Oxz and Oyz are parabolas (principal parabolas) x* =2pz and y*=-2-q-z with
parameters p=a’ or g =b" accordingly. Since symmetry axes of principal parabolas

are directed in opposite sides, hyperbolic paraboloid is called saddle surface. Section

of hyperbolic paraboloid with plane Oxy is a pair of line, which intersect in the
origin, and section with a plane, which is parallel to the plane Oxy , is hyperbola.

Hyperbolic paraboloid can be expressed as a surface, which is formed by
hyperbolas (including the "cross" from their asymptotes), which vertexes lie on

principal parabolas (Fig. 11.15, b).
EXERCISES
1. Plane passes through the points A(1,2,3), B(-1,3,1), C(3,-4,0). For the

given plane find: a) general equation; b) parametric equation.

2. Find information about positional relationship of each pair of planes (are
they skew, intersecting, parallel, equal, perpendicular, if they are intersecting find
their mutual point):

a)2-x+2-y+4-z-12=0, 3-x-6-y+1=0;

b)3.-x-2-y-3-2+5=0, 9-x-6-y-9-2-5=0;

c)2:x—y-z-3=0, 10-x=5-y-5.-2-15=0;

d2-x-y+4-z-3=0, x—6-y-2-z-1=0,

3. Find information about positional relationship of each pair of lines (are they
skew, intersecting, parallel, equal, perpendicular, if they are intersecting find their

mutual point):

x=1+2-1, x=6+3-1,
a)y y=T7+t, telR, y=—1-2-t,teR;
z=3+4-¢, z==-2+1,
b {2-x+3-y+2-z=0, { z—4=0,
x+z—-8=0, 2:x+3-z-7=0;
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x=9-t1,
2:x-3-y-3-z2-9=0,
C) y=5-¢t, teR,
x=2-y+z+3=0;
z==-3+1,
d) X_y+2_z-3 x-4 y-1 z-6
1 0 27 2 3 -1
e) X _y+8 z+3 x+y—-z=0,
-1 4 37 2-x-y+2-z=0.

4. Get information about positional relationship of each pair of line and plane
(are they intersecting, perpendicular, parallel, if the line belongs to a plane, in case of
intersection find mutual point):

x-12 y-9 z-1

a , 3-x+5-y-z-2=0;

)T Ty T Y
x=3-y+2-z+3=0,

b) x—y—-2-z+3=0;
2-x+z-3=0,
x=-1+2-¢,

c)s y=3+4-t, teR; 3-x-3-y+2-z-5=0;
z=3-1;

X+2-y+3-z+8=0,
d 2-x-y—-4-z-24=0.

5:x+3-y+z-16=0,

5. Define surface names and compose according canonical equations of the
given algebraic surfaces of the second order written in Cartesian coordinate system:

a) X+’ -z -2.x-2-y+2-2=0;

b) x’-y*-2z"-2-y-1=0;

¢) x’—4-x+z+3=0;

d)2-x°+9-y*+2-22~4-x-y+4-y-z-1=0;

e)3-x*+3-y*+3-27-8-x-y-6-y-2=0;

2)2-x"+2-y"+2°-10-x-y+20-x-8-y+29=0;

h)16-x*+9-y°—z"-24-x-y-9-x-12-y+4-2+71=0.

6. Define surface names and compose according canonical equations of the
given algebraic surfaces of the second order written in Cartesian coordinate system:

a) m-x2+n-y2—22—2-m-n-x—2-m-n-y—2-m-n-z+m2-n-(2—n)=0;

b)n-x*+n-y* + P4 2-mox-y+2-x-z+42-y-z+m—-n=0.
y

m+n
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CHAPTER 12. LINEAR (VECTOR) SPACES

12.1. DEFINITION AND EXAMPLES OF LINEAR SPACES
Axioms of Linear Spaces

Linear (vector) space is a set V of arbitrary elements, that are called vectors,
in which the operations of vector addition and multiplication by a number are
defined, i.e. any two vectors u and v have a corresponding vector u+ v, which is
called sum of vectors u and v, any vector v and any number A have a
corresponding vector Av, which is called product of vector v and number ), that
the following conditions are satisfied:

) u+v=v+u Vu,veV;(addition commutativity)

2) u+(v+w)=(u+v)+w Vu,v,we V; (addition associativity)

3) there exists such an element o€V, which is called zero vector, that
v+o=v VveV;

4) for any vector v there exist such a vector (—v)eV, which is called
opposite to vector v, that v+(-v)=0;

5) K(u+v)=ku+7»v Yu,veV,VielR;

6) (}\,+H)V=}\,V+]J,V VveV, Vi pnelR;

7) K(uv)=(7»u)v VveV, K VA unelR;

8§ l-v=v VveV.

Conditions 1-8 are called the axioms of linear space. Equality sign between
vectors means that it is the same element of set V' on both sides of equation. Such
vectors are called equal.

Linear space is a nonempty set, because it necessarily has zero vector.

Operations of vector addition and multiplication of a vector by a number are
called linear vector operations.

Difference of vectors u and v is a sum of vector u and opposite vector —v;

it is denoted as follows: u—v=u+(-v).
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Two nonzero vectors u and v are called collinear (proportional), if there
exists such a number A, that v=Au. Collinearity notion is applicable to any finite
number of vectors. Zero vector o is collinear to any vector.

In the definition of linear space operation of vector multiplication by number is
determined for real numbers. Such space is called linear space over the field of real
numbers, or simply real linear space. If we substitute the field of real numbers R
with the field of complex numbers C , then we will obtain linear space over the field
of complex numbers, or simply complex linear space.

Further, if there is no additional information, real linear spaces will be considered.
In some cases for simplicity we will omit the word “linear”, because all spaces

considered in this section are linear.
Examples of Linear Spaces

1. Consider {0} — set, which consists of the only zero element, with

operations o+o0o=0 and Ao =o0. For these operation axioms 1-8 are satisfied.

Consequently, set { 0 } is a linear set over any numerical field. Such space is called
zero space.

2. Consider V,V,,V; — sets of geometric vectors (directed segments) on line,

plane and in space accordingly with ordinary operations of vector addition and vector
multiplication by a number. From the elementary geometry we get that all axioms

1-8 of linear space are satisfied. Consequently, sets V,,V,, V, are real linear spaces.

Instead of free vectors we can consider corresponding sets of radius vectors, e.g. sets
of vectors on plane, which have common tail, i.e. are applied to a fixed point of a
plane, which is a real linear space.

Set of unit radius vectors does not form a linear space, because any sum of
these vectors does not belong to the considered set.

3. Consider R” — set of matrix-columns of sizes 7 x1 with operations of matrix

addition and matrix multiplication by a number. Axioms 1-8 of linear space are
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satisfied for this space. Zero vector in this set is zero column 0=(O O)T.

Consequently, set R” is real linear space.

Similarly, set C" of columns of sizes nx1 with complex elements is a complex
linear space.

Set of matrix-columns with nonnegative real elements is not a linear space,
because it has no opposite elements.

4. Consider {4x=o0} — set of solutions of homogeneous system Ax=o0 of

linear algebraic equations with » unknowns (where A is the matrix of system), as set
of matrix-columns of sizes nx1 with operations of matrix addition and matrix
multiplication by a number. Note, that this operations are determined on set

{Ax = o} . From Property 1 of homogeneous system solutions it follows that sum of

two homogenous system solutions and product of its multiplication by a number are

also solutions of the system, 1.e. they belong to the set {Ax= 0}. Axioms of linear

space for columns are satisfied (previous example). Thus, set of homogeneous system
solutions is a real linear space.

Set {Ax =b} of inhomogeneous system Ax = b solutions (b # 0), is not a linear

space, because it has no zero element (x =0 is not the solution of inhomogencous
system).

5. Consider R™” — set of matrices of sizes mxn with operation of matrix
addition and matrix multiplication by a number. Axioms 1-8 of linear space for this
set are satisfied. Zero element is a zero matrix O of corresponding sizes.
Consequently, set R™” is linear space.

6. Consider P(C) — set of polynomials of the only variable and with complex

coefficients. Operations of polynomial addition and multiplication by a number,
which is considered as zero order polynomial, are defined and they satisfy axioms
1-8 (in particular, zero vector is a polynomial, which is identically equal to zero).

Therefore, set P(C) is a linear space over the field of complex numbers.
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Set P(R) of polynomials with real coefficients is also a linear space
(obviously, over the field of real numbers).
Set P, (R) of polynomials of order not greater than » with real numbers is also

a real linear space. Note, that operation of polynomial addition is defined on his set,
because order of polynomial sum does not exceed order of its summands.

Set of polynomials of order n is not a linear space, because sum of such two
polynomials can be a polynomial of lower order, which does not belong to the
considered set.

Set of all polynomials of order not greater than » with positive coefficients is
also not a linear space, because multiplication of such polynomial by negative
number results into a polynomial, which does not belong to the considered set.

7. Consider C(RR) — set of real functions, determined and continuous on R.
Sum (f +g) of functions f, g and product Af of multiplication of function P,(R)
by real number A are defined by the following equalities: (f + g)(x)= f(x)+ g(x),
(Af)(x)=L- f(x) for all xeR. These operations are defined on C(R), as sum of

continuous function and product of multiplication of continuous function by

a number are continuous functions, i.e. elements of C (R) Let’s check the

correctness of linear space axioms. From the commutativity of real number addition it

follows the correctness of the following equality /' (x)+ g(x) = g(x)+ f(x) for any
xeR. Therefore f+g=g+ f,1.e. axiom 1 is satisfied. Axiom 2 follows similarly
from the addition associativity. Function o(x) , Which is indentically equal to zero,
can be considered as zero element (it is obviously continuous). For any function f
the following equality is correct: f(x)+ o(x)= f(x), i.e. the axiom 3 is satisfied. The
opposite element for function f is function (—f)(x)=—f(x). Then f+(-f)=o0

(axiom 4 is satisfied). Axioms 5, 6 follow from addition and multiplication by a
number distributivity and axiom 7 — from associativity of multiplication by a number.

The last axiom is satisfied, as multiplication of function by unit do not change the
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function: 1- f(x) = f(x) forany xeR, 1. 1- f = /. Thus, the considered set C(R)
with defined operations is a real linear space.
Similarly it can be proved that C'(R), C*(R),..., C"(R),... (sets of

functions with continuous derivatives of the first, second and etc. order accordingly)

are linear spaces.

12.2. LINEAR DEPENDENCE AND LINEAR INDEPENDENCE
OF VECTORS

Notions of Linear Dependence and Linear Independence of Vectors

For elements of a linear space operations of multiplication by a number and
addition are defined. With these operations algebraic expressions can be composed.

Vector v is called a linear combination of vectors v,,v,,..., v, if
V=0V, +0,V,+..+Q,V,, (12.1)

where a,,a,,...,0, are some numbers. In this case it is said that vector v is
decomposed by vectors v,,v,,...,v, (vectorv is linearly expressed by vectors
V,V,,...,¥, ) and numbers «,,,,...,a, are called decomposition coefficients. Linear
combination with zero coefficients v=0-v,+0-v,+...+0.v_ is called trivial.

Set of vectors v ,v,,...,v, from V is called system of vectors, and any part of

the system — subsystem.

System of k vectors v,,v,,...,v, is called linearly dependent, if there exist
such numbers a,,a,,....,a, , not all equal to zero simultaneously, that the following

equation is correct

oLV, +0,V, +.. 4+, vV, =0, (12.2)

i.e. their linear combination is a zero vector.

System of k vectors v,,v,,...,v, is called linearly independent, if equality

(12.2) is possible only when o, =, =...=, =0, i.e. linear combination in the left
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part of (12.2) is trivial. One vector v, also forms the system: if v, =0 - linearly
dependent, if v, # o0 — linearly independent. Rank of the vector system v,,v,,...,v,

is a maximum number of linearly independent vectors of the system; it is denoted by

rg(vl,vz,...,vk).
Property of Linearly Dependent and Linearly Independent Vectors

1. If system of vectors has zero vector, then it is linearly dependent.
2. If system of vectors has two equal vectors, then it is linearly dependent.

3. If system of vector has two proportional (collinear) vectors (v, =Av ), then

it 1s linearly dependent.

4. System of k£ >1 vectors is linearly dependent if and only if there is at least
one vector, which is a linear combination of others.

5. Any vectors, which are part of the linearly independent system, form
linearly independent subsystem.

6. System of vectors, which has linearly dependent subsystem, is linearly
dependent.

7. If system of vectors v,,v,,...,v, is linearly independent and after addition

of vector v it becomes linearly dependent, then vector v can be uniquely

decomposed by vectors v,,v,,...,v,, i.e. decomposition coefficients (12.1) are

defined unambiguously.

8. Let any vector of system u,,u,,...,u, can be decomposed by vectors of
k

system Vv,,v,,...,v,, 1.e. u, =Zaﬁvj , i=1,.,] (it is said that system of vectors
j=1

u,;,u,,...,u, is linearly expressed by system of vectors v,,v,,...,v,). Thenif / >k,
the system of vectors u,,u,,...,u, is linearly dependent.

Consider system of vectors v,,v,,...,v, of real linear space V (i.e. over the
field of real numbers R). Set of all linear combinations of vectors v,,v,,...,v, is

called their linear span and it is denoted by
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Span(v,,v,,...v, )={ v: v=ay +ay,+. . +ay,; a R, i=1,...k}.

Vectors V,,V,.,...,V, are called generators of linear span Span(v,,v,....,v,).
Also linear span can be denoted by Lin(vl,vz,...,vk )

Example 12.2. In space V, of radius vectors on plane (the second example of

linear spaces) consider two noncollinear vectors @=04 and b =OB. Find
Span (c_z b ) .
O Any radius vector ¢ = OC can be decomposed by two noncollinear vectors of this
plane, i.e. it can be expressed as linear combination ¢ =o.-a +f3- b , where o e R and
BeR. Consequently, set of all possible linear combinations of @ and b coincides
with the whole space V, of radius vectors on a plane, i.e. Span(a_ b ) =), 1

Example 12.3. Prove that in space PZ(IR) of polynomials, which order is not
greater than two (the sixth example of linear spaces), polynomials p,(x)=1,
p(x)=x, p,(x)=x> are linearly independent. Decompose polynomial
p(x)=(x+1) by p(x) =1, p(x)=x, p(x)=x".

[0 Compose linear combination of the given polynomials and equate it to zero (to

zero element — polynomial identically equal to zero):
Ay Po (%) + Ay 2 (X) + Ay Py (X) = Ay 14+ Ry + Ayx” =0,

Identical equality to zero of a polynomial is possible in only one case: when all its

coefficients are equal to zero, ie. A, =h,=A;=0. Consequently, considered
polynomials are linearly independent. Write the given polynomial p(x) as linear

combination of polynomials p,(x), p,(x), p,(X):

p(x)=(x+1)2 =x2+2x+1=1-py(x)+2- p(x) +1- p,(x) W
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12.3. DIMENSIONALITY AND BASIS OF LINEAR SPACE
Dimensionality and Basis Notions

Linear space V is called n-dimensional, if there exists a system of » linearly
independent vectors and each system of bigger number of vectors is linearly
dependent.

Number 7 is called dimensionality (number of dimensions) of linear space V
and it is denoted by dim V. In other words, dimensionality of a space is a maximum
number of linearly independent vectors of this space. If such number exists, then
space is called finite-dimensional. 1f for any natural number » in space V there
exists a system of »n linearly independent vectors, then this space is called infinite-
dimensional (it is denoted by dimV =w). Further, if there is no additional
information we will consider finite-dimensional spaces.

Basis of n-dimensional linear space is an ordered set of »n linearly
independent vectors (basis vectors). Basis of linear space is defined ambiguously, e.g.

if e ,e,,....e 1s a basis of V, then the system of vectors Le,, Ae,,..., e, for any

n

A #0 isalsoabasisof V.

Number of basis vectors in different bases of the same finite-dimensional space
is obviously the same, because this number equals to dimensionality of this space.

In some spaces, which often appear in different applications, one of possible

bases, that is the most convenient from practical point of view, is called standard.
Properties of Basis

1.If e,e,,....e is basis of n-dimensional linear space V, then any vector

v € V can be expressed as linear combination of these basis vectors:
v=ve +v,e,+..+tve, (12.3)

and moreover this expression is unique, 1.e. the coefficients v,,v,,...,v, are define

unambiguously. In other words, any vector of the space can be uniquely decomposed

by basis.
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2.1f e ,e,,....e, is basis of space V, then V=Span(e,e,,...e ), i.e. linear

n
space is linear span of its basis vectors.

3.1f e ,e,,...,e, is linearly independent vector system of linear space V and
any vector ve 'V can be expressed as a linear combination v=ve +ve,+..+ve ,
then space V has dimensionality #n and system e,,e,,...,e, is its basis.

4. Any linearly independent system of £ vectors of n-dimensional linear space

(1<k <n) can be complemented to the basis of this space.
Examples of Linear Spaces Bases

1. Zero linear space { 0 } has no linearly independent vectors. Therefore, its
dimensionality equals to zero: dim{ 0 } = (0. This space has no basis.

2. Spaces V,,V,.V; have dimensionalities 1, 2, 3 accordingly. Indeed, any
nonzero vector of space J; forms linearly independent system (by definition), and
any two nonzero vectors of V| are collinear, 1.e. linearly dependent (example 12.1).
Consequently, dim}; =1, and basis of this space /] is any nonzero vector. Similarly,
it can be proved that dim/, =2 and dim/, = 3. Basis of space V, is any ordered set

of noncollinear vectors (one of them is assumed as the first basis vector, another — as

the second). Basis of V; is an ordered triplet of noncoplanar vectors. Standard basis
of V| is unit vector i on a line. Standard basis of V, is basis 7, j, which consists of
two mutually perpendicular unit vectors of plane. Standard basis in V; is basis 7, J,

k , which consists of three unit pairwise perpendicular vectors, which form the right
triplet.
3. In space R” it is easy to find system of » linearly independent columns,

e.g. columns of 1dentity matrix, which are linearly independent

1 0 0

0 1 :
e=l..e=].| ,enzo.

0 0 |
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Consequently, dimR”=n. Space R" is called n-dimensional real arithmetical
space. The given set of bases is considered as standard basis of space R”. Similarly,
it can be proved, that dimC” =n, therefore space C” is called n-dimensional
complex arithmetical space.

4. Recall, that any solution of homogeneous system Ax =o of linear equations

with n unknowns can be expressed in a form x=C,p, + C,0,+...+C __ 0, _ , where

r=1g 4 and @,, ¢,,..., ¢, 1is fundamental system of solutions. Consequently,
{Ax =0} =Span(¢,,9,,...,9,_,), i.e. basis of space {Ax =0} of homogeneous system
solutions is its fundamental system of solutions, dimensionality of such space

dim{ Ax=0}=n-r.

5. In space R*® of matrices of sizes 2 x 3 it is possible to choose 6 matrices:
1 00 01 0 0 0 1
€ = s €, = >, €= s
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
o es = > e6 = >
0 0 01 0 0 0 1

which are linearly independent. Indeed, their linear combination

o a, Oy
O "€ +0, e +0, e+, e +0-e+0 €= (12.4)
equals to zero matrix only in trivial case (o, =a, =...= o, =0). Reading the equality

(12.4) from right to left, we conclude, that any matrix from R*® can be linearly

expressed via the chosen 6 matrices, i.e. R*® =Span(e,,e,,...,¢). Consequently,

dimR** =2-3=6, and matrices ¢, e,,..., e, are (standard) basis of this space.

Similarly it can be proved, that dmR™" =m-n.

6. For any natural number » in space of polynomials P(C) with complex

coefficients it 1s possible to find » linearly independent elements, e.g. polynomials

2 — . . . .
e,=z, e,=z",..., e,=z"" are linearly independent, because its linear

n

. . —1
combination g,-¢+a,-e,+..+a,-e =a,+a,z+..+a,z" equals to zero
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polynomial (o(z)=0) only in trivial case (a,=a,=...=a, =0). Since this system of
polynomials is linearly independent for any natural », the space P ((C) is infinite-
dimensional.

Similarly, we make a conclusion about infinite dimensionality of space P(R)

of polynomials with real coefficients.

Space P, (R) of polynomials of order not greater than » is finite-dimensional.

2
Indeed, vectors ¢, =1, e,=x, e,;=x

,..os €, =x" form (standard) basis of this
space, because they are linearly independent and any polynomial from P, (]R) can be
expressed as linear combinations of these vectors:
ax"+.+ax+a,=a,-¢+a-e+..+a, e,
Consequently, dim P, (R)=n+1.
7. In space T, (IR) of trigonometric binomials (with frequency ® = 0) with real

coefficients, basis is formed by monomials e () =sino?, e,(t)=coswt. They are

linearly independent, because identical equality asin®? + bcosw? =0 is possible only

in trivial case (a=b=0). Any function f(¢)=asinw?+bcosw? linearly expresses

via basis binomials: f(f)=a ¢, (t)+b e,(t). Hence, dim7, (R)=2.

12.4. COORDINATES AND COORDINATES TRANSFORMATIONS
Coordinates of Vectors in the Given Basis

Consider e, ,e,,...,e, as basis of linear space V. Then each vector ve V can

be decomposed by basis (Property 1 in Section 12.3), i.e. expressed in a form

v=ve +ve,+..+ve , and coefficients v,,v,,...,v, in decomposition are uniquely
defined. These coefficients v,,v,,...,v, are called coordinates of vector v in basis
e .e,,....,e (orrelative to basis e, ,e,,...,e,).

Coordinates v,,v,,...,v, of vector v is an ordered set of numbers, which is

represented as a matrix-column v=(y, -+ v ), is called coordinate column of

vector v (in the given basis).
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Vector and its coordinate column is denoted by the same letter — bold and light
font accordingly.

If basis (as an ordered set of vectors) 1s expressed as a symbolic matrix-row
(e)=(e,,....e )=(e, -+ e ), then the decomposition of vector v by basis (e) can
be written in the following form:

vl
v=ve +ve, +..+ve =(e - e)| i |=(e)v.

V

n

There multiplication of the symbolic matrix-row (e) by numerical matrix-

column v i1s calculated by the rules of matrix multiplication.
If it 1s necessary, when there are different bases in question, notation of a basis,

relative to which a coordinate column was obtained, can be specified, e.g. v —
(€)

coordinate column of vector v relative to basis (e)=(e,,....e, ).

By the Property 1 (Section 12.3) it follows, that equal vectors has equal
corresponding coordinates (in the same basis), and vice versa, if corresponding

coordinates of vector are equal, such vectors are equal too.
Linear Operations in Coordinate Form

Consider e, ,e,,...,e, — basis of linear space V, vectors u and v 1n this basis
have the following coordinates u =(x, -+ u,)" and v=(v, -+ v )" accordingly,
1.e.

u=ue +ue,+.+tue ., v=ve +ve,+.+ve . (12.5)

During the addition vector coordinates are summed up:

u+v=_+v)e +(u,+v,)e, +..+, +v)e,. (12.6)

During the multiplication by a number all coordinates are multiplied by this

number:

Av=(Av)e +(Av,)e,+..+(Av )e . (12.7)
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In other words, sum of vectors w+v has coordinates u+ v, and product Av

has coordinates Av. Certainly, all coordinates are obtained in the same basis

(e)=(e,,...,e,).
Coordinates Transformation during Basis Change

Consider two bases of space V: (e)=(e,,...,e,) and (e')=(e;,e,,....e)). Basis
(e) we will call "old" and basis (e') — "new", then decomposition of each vector of

new basis by the old one is given by:
e =s,€e+s,e+..+s5 ¢, i=12..n. (12.8)

Writing by columns the coordinates of vectors (e;,e),...,e)) in basis (e) it is

possible to compose matrix:

S=|+ i (12.9)

Square matrix S, which is composed from coordinate columns of vectors from

new basis (¢') decomposed by old basis (e), is called transition matrix from old

basis to new one. By the transition matrix (12.9) formulas (12.8) can be rewritten as:
(¢, -+ €)=(e, -+ e)-S orsimpler (e)=(e)-S. (12.10)

Multiplication of symbolic matrix-row (e) by transition matrix S in (12.10) is

calculated by the rules of matrix multiplication.

Consider in basis (e) vector v with coordinates v,,v,,...,v,, and in (e) with

!

coordinates v, ,v,,...,V. , i.e.
v=ve +Vve,+..+ve =ve +ve,+..+ve
or simpler, v=(e)v=(e')V'.
Coordinate column of vector in old basis is obtained as the result of

multiplication of transition matrix by the coordinate column of vector in new basis:
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v=SV or ] Dl (12.11)

o2
<‘

Properties of Transition Matrix

1. Consider three bases (e), (f), (g) of space V and the following transition

matrices: S from basis (e) to basis (f); S
(&)>(f) (N)>(g

) from basis (f) to basis (g);

S from basis (e) to basis (g). Then

(e)—>(g)

N S (12.12)

(e)—>(g) B (©)>(1) (H)>(g)

2. If § is transition matrix from basis (e) to basis (f), then the matrix S is
invertible and inverse matrix S~ is transition matrix from basis (f) to basis (e).
Coordinates of vector v in bases (e) and (f) are connected by the following
formulas:

v=_3Sv, v=S5"v.
© () (e)

3. Any invertible square matrix of n-th order can be a transition matrix from

one basis of n-dimensional linear space to another one.

Example 12.5. In two dimensional arithmetical space R” there are two bases:
3 1 1 -1) . iy : :

f=|_| f,= and g, =| |, g,= . Find transition matrix S from basis
2 1 2 1 (1)—>(g)

6
(f) to basis (g) and coordinates of vector v = [9] in each basis.

1 0
O Consider standard basis el:[0]°e2:[1] of space R’ (Section 12.3). Find

coordinates of vectors f,, f,, g, g, in standard basis. Decompose vector f;:

oo (e ndy
fi=|_|=3|_|+2-] |=3-e+2-e,,1e f=|_|.
2 0 1 2
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In standard basis (e) of space R* coordinate column f, coincides with f,. For

1 1 -1
other vectors similarly we get f, = [1], g = [2], 2, :[ i ] From the coordinate

columns we compose the transition matrix (12.9) from standard basis (e) to the given

31 1 -1
bases (f) and (g): S =[ ] S —[ ]

©>m |2 1 ©>@ (2 1

By the Property 1 of transition matrices we obtain § = By

M@ E)>e) ((g)

Property 2: S = S~ . Therefore
(D)) ()>(D)

L 3 (1 -1 (1 -1\(1 -1\ (-1 =2
S = S . S - = = .
- (@0 @©->@ (2 1 2 1 -2 3 )2 1 4 5

In standard basis (e) of space R coordinate column (v) = [9] coincides with vector

v. Find coordinates of this vector in basis (f) (by Property 2 of transition matrices):

L 3 1Y (6) (1 -1)(6) (-3
y = S V= . = . = .
M @em @ (2 1) (9) (=2 3)l9) lis

Indeed, the following decomposition is correct

_[®- 3 ) 15 h_ 3 15
[l

Find coordinates of vector v in basis (g) in several ways:

p -1 =2Y'(=3) 1(5 2)\(-3) (5
v= S v =— = ;
(g) (f)~(g)(r) 4 5 15) 3\-4 -1){15 -1

-1
2 Sra 1) ()5 o)
® @@ |2 1 9) 3\-2 1/{9 -1

The obtained result confirms the decomposition:

e [easer e

1l
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12.5. SUBSPACES OF LINEAR SPACE
12.5.1. Definition of Linear Subspace

Nonempty subset L of linear space V is called linear subspace of space V , if:

1) w+vel Vu,velL (subspace is closed relative to addition operation);
2) AveL V veL for any number A (subspace is closed relative to

multiplication by a number operation).

For linear subspace denotation we will use the following structure L <V, and
the word "linear" will be omitted for simplicity.

Note, that conditions 1, 2 in definition can be substituted with only one

condition: Au+uvelL for any vectors u,veL and any numbers A and p.

Certainly, here and in definition it we speak about arbitrary numbers from the same

numerical field, over which the linear space V is defined (Section 12.1.1).
Properties of Linear Subspaces

1. Any linear space V has two linear subspaces:
a) thespaceitself V,ie. V<V,

b) zero subspace {0 }, which consists of a unique zero vector of V| i.e.

{ 0} <V . These subspaces are called improper, and the rest — proper.

2. Any subspace L of linear space V is its subset: L<V = L c V, but not
every subset M c V is linear subset, because it can be unclosed relative to linear
operations.

3. Subspace L of linear space V is linear space with the same operations of
vector addition and vector multiplication by a number as in space V, because they
satisfy axioms 1-8 (see Section 12.1). Thus, it is possible to talk about subspace
dimensionality, basis and etc.

4. Dimensionality of any subspace L of linear space V does not exceed

dimensionality of V: dimL <dim V . If the dimensionality of subspace L <V equals
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to dimensionality of finite-dimensional space V (dimL =dim V), then the subspace
coincides with the given space: L=V .

S. For any subset M/ of linear space V its linear span Lin(M ) 1s subspace of
Vand M cLin(M)<V.
6. Linear span Lin(L) of subspace L <V coincides with the subspace L, i.e.

Lin(L)=L.
12.5.2. Examples of Linear Subspaces

1. Space {0 } which consists of a unique zero vector of space V, is a
subspace,ie. {0 } < V.

2. Consider V,V,,V, — sets of geometric vectors (directed segments) on a line,
plane and in space accordingly. If the line belongs the plane, then V; <V, <V;. On the
contrary, set of unit vectors is not a linear subspace, because its multiplication by a
number, which is not equal to 1, will result into vector, which does not belong to the
initial subspace.

3. In n-dimensional arithmetical space R” consider set L of "semi-zero"
columns x=(x, -~ x, O - 0)" withlast (n—m) elements equal to zero. Sum

m

of such "semi-zero" columns is a column of the same form, i.e. addition operation is
closed in L. Multiplication of "semi-zero" column by a number will result into
"semi-zero" column, i.e. multiplication operation is closed in L. Therefore, L. <R”
and dimL=m.

On the contrary, subset of nonzero columns in R” is not a linear subspace,

because multiplication by a zero results into zero column, which does not belong to
the considered set. Examples of other subspaces of R” are listed further.

4. Space {Ax= o} of homogeneous system solutions with # unknowns is a

subspace of n-dimensional arithmetical space R”. Dimensionality of this subspace is

defined by a matrix of system: dim{Ax=o0}=n-rg 4.
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Set {Ax = b} of inhomogeneous system solutions (b # 0) is not a subspace of

R”, because the sum of two solutions of inhomogeneous system will not be the
solution of this system.
5. In a space R™" of square matrices of order n consider two subsets: set R

nxn
skew

of symmetric matrices and set R’ of skew-symmetric matrices. Sum of symmetric

matrices is a symmetric matrix, i.e. addition operation is closed in R’

Multiplication of symmetric matrix by a number also results in symmetric matrix, i.e.

multiplication operation is closed in RT 7. Consequently, set of symmetric matrices is

a subspace of square matrices space, i.e R <R™. It is easy to find the

dimensionality of this subspace. Standard basis is formed by » matrices with the only
nonzero element (it is equal to 1) on the main diagonal, and matrices with two

nonzero elements (they are equal to 1), which are placed symmetrically relative to the

n(n+1)
2

main diagonal. In total there will be n+(n—1)+...+2+1= matrices in the

n(n+1)

R Similarly we find, that R)” <R™" and

skew

basis. Consequently, dimR7 =

dimRzr =" =D

skew 2

Set of singular square matrices of »-th order is not a subspace of R™”, because

the sum of two singular matrices can be not singular matrix in R*?, eg.

1 0 N 0 0 (1 0
00/ (0 1) l0 1)
6. In space of polynomials P(R) with real coefficients it is possible to show
the following sequence of subspaces £, (R)< B (R) <P (R)<...< P (R)<...<P(R).

Set of even polynomials ( p(—x) = p(x)) is a linear subspace of P(RR), because

the sum of even polynomials and multiplication of even polynomials by a number
will be even polynomials.

Set of odd polynomials ( p(—x)=-p(x)) 1s alsoa linear space. Set of
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polynomials with real roots is not a linear subspace, because addition of such

polynomials can result into a polynomial with no real roots, e.g.
(P =-x)+(x+D)=x*+1.

7. In space C(IR) it is possible to show the following sequence of subspaces:
C(R)>C'(R)>C*(R)>....-C"(R) ... .

Polynomials from P(IR) can be considered as functions, determined over R.
Since polynomial is a continuous function with derivatives of any order, it is possible
to write: P(R)<C(R) and P,(R)<C"(R) Vm,neN.

Space of trigonometric binomials 7, (R) is subspace of C”(R), because
derivatives of any order of function f (t) = =gsin®f+bcosm? are continuous, i.c.
T,(R)<C"(R) ¥meN.

Set of continuous periodic function is not a subspace of C (]R), because the

sum of two periodic functions can be a aperiodic function, e.g. sint + sin(t).

EXERCISES

1. Prove that for the given linear space the system of vectors (e) form valid

basis. Decompose vector (v) by this basis:

. 1 2 3
a) space R": e, = ,e, = ,V = ;
m m+1 n
(m) (m+1 m+2 n
b)space R’: e, =| 1 |,e,=| 2 |e=| 2 |v=|3];
1) L1 1 2

c) space of polynomials P, of degree not exceeding 2: e(x)=x+m,
e,(x)=x"-1, e,(x)=x-m-1, v(x)=n-x".

2. Find transition matrix S from basis (f) to basis (g):

) R2: m ¢ m+1 1 1
a) space f = = 8 = 8, = ;
p 1 1 PRs) 1 gl n g2 n+1
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b) space of  symmetric  matrices of the 2™  order:

f_IOf_OOf_Ol _mO _OO S m m+n)
o o/ o 12T 0BT o o) 0 0B T man n )

c) space of polynomials P, of degree not exceeding 2: f(x)=1, f,(x)=x,
f,(x)=x*, g (x)=x+m, g,(x)=x"—n, g,(x)=x—m—1.
3. Find dimensionality and basis of the given subspaces of R*:

. X +x,+nx;+mx, =0,
a) {Ax = O} — set of solutions of the system:
mx,+nx,+2x,+3x,=0;

b) Lin(a,a,a,) - linear span of vectors a=(1 1 m -n),
a,=0 2 0 m',a,=(1 3 m m-n).

4. Find transition matrix S from basis (f) to basis (g):

3 2 2 -1
a) f1= 2 > fz:[l]’ gl=[_2]9 g2=[6]a

1 2 3 3 5 1
b)ﬁ:z,ﬂ:3,ﬁ=7'g1= 1'g2=2'g3= 1 .
1 3 1 4 1 -6

5. In the space R*® of square second-order matrices, a set { AX =X 4} of

m n

matrices that are permutable with a matrix 4=
m-n m+n

] is given. Show that

this set is a linear subspace in R*?, find its dimensionality and basis.
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CHAPTER 13. LINEAR MAPPINGS AND TRANSFORMATIONS

13.1. LINEAR MAPPINGS
13.1.1. Definition of Linear Mappings

Let’s show main definitions, connected with the notion of mapping (function,

operator).

Consider V' and W - given sets. It 1s said, that mapping (function) f is
defined on set I, if every element vel has a unique corresponding element f(v)
of set ' . Such a correspondence is called a mapping of a set V' into a set W and it
is denoted by f:V —>W or V—L>W .

If mapping f for an element v}/ return a corresponding element we WV, 1.e.
w= f(v), element w is called image of v, and v — original of w.

Two mappings / .V —>W and g:V —W are called equal, if f(v)=g(v)
Vvel .

Mapping f:V — W is called:

e injective, if different elements of J° have different images: v, zv, =
JM) = f(v,);
e surjective, if for any element from / there is at least one original:

VwelW Ivel w=f(v);

e bijective (unambiguous), if it is injective and surjective simultaneously.

Surjective mapping is also called a mapping of a set V to a set IV .

Composition of mappings g:U —>V and f:V—>W 1s a mapping
fog:U—W , whichis defined by the equality (f o g)(u)= f(gu)).

Mapping 6, :V —V is called identical, if any element of set " is associated

with itself: §,(v)=v Vvel .

Mapping [~ :W —V is called inverse for the mapping f:V —W, if
flof=6,V—=V and fof'=§,:W—W.Mapping f is called invertible, if
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there exists an inverse mapping for it. Necessity and sufficiency condition of
invertibility is bijectivity (unambiguity) of a mapping.

Consider V and W - linear space (over the same numerical field). Mapping
AV —>W is called linear, if:

1) A(v+v)=AV)+A(v,) Vv,eV, Vv,eV;

2) AA-v)=A-A(v) VveV for any number A (from the given numerical
field).

Condition 1 is called additivity of mapping, and condition 2 — homogeneity.

Space V is called space of originals, and space W — space of images.

Note, that conditions of additivity and homogeneity can be substituted with a

unique condition of linearity:
ANV, +0,V,) =M A(V)+ N, A(v,) Vv,eV, Vv, eV
for any numbers A, and A, from the given numerical field.

13.1.2. Properties of Linear Mappings

Consider 4 : V— W — linear mapping.
1. Linear mapping #:V — W associates zero element o, of V with zero
elements oy, of W.
2. Linear mapping of linear combination is a linear combination of images:
k k
J[in vi]=ZKi A(V,).
i=1 i=l
3. If vectors v,,...,v, are linearly dependent, then their images are linearly
dependent.
4. Consider A :V— W — surjective mapping of space V onto space W and

vectors w,,...,w, of space W, which form linearly independent system. Then in V
there exists such linearly independent system of vectors v,,...,v,, that A(v,)=w,,

i=1,..k.

*?
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5. During linear surjective mapping £ :V — W of finite-dimensional space
the dimensionality of image space does not exceed the dimensionality of original
space, i.e. dimW <dimV .

6. Composition of linear mapping is a linear mapping too.

7. If linear mapping 4 : V — W is invertible (unambiguous), then the inverse
mapping ' : W — V is linear.

8. Linear mapping of finite-dimensional space is unambiguously defined by

images of basis vectors.
Linear Operations with Linear Mappings

Sum of mappings A:V—>W and B:V->W is a mapping
(A+B):V—>W, which is defined by the following equality
(A+B)v)=A(V)+B(v) forany ve V.

Product of mapping A:V—>W and number ) 1is a mapping
(A-A):V—> W, which is defined by the following equality (A-A)V)=A-A(V)
forany veV.

Sum of linear mapping and product of linear mapping and a number are linear

mappings.
13.1.3. Examples of Linear Mappings

1. Denote by 0:V —> W a zero mapping, which associates any vector ve V

with zero element oy, of space W . Conditions of additivity and homogeneity of such

mapping are, obviously, satisfied. This mapping is neither injective (different

originals v, and v, are associated with the same image oy, ) nor surjective (from all
vectors of W only zero element has an original). Therefore, zero mapping 1s not
bijective and consequently it is not invertible.

2. Consider in n-dimensional linear space V basis e, ,....,e,. Denote by
&:V—>R" mapping, which associates every vector v with its coordinate column

v=(v, - v,) relative to the given basis. This mapping is linear, because during
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the addition of vectors of the same basis their coordinates are also summed up and
during the multiplication of vector by a number coordinates of this vector are also
multiplied by that number (Section 12.4). This mapping is injective (different vectors

have different coordinates in the same basis) and surjective (for any column
v=(, -+ v) e€R" there exists an original v=ve +..+ve, ). Therefore,
mapping & is bijective and consequently invertible. On the other hand, mapping,
which associates every vector veV with column v=(v,+1 - v +1)" eR", is

not linear, because the image of zero vector o, € V for such mapping is a column
(1 --- 1) #0, which is not equal to zero.

3. Consider 2,(R) and P,_,(R) — spaces of polynomials with real coefficients

dp(x)
dx

of order not greater than » and (n—1) accordingly. Denote by D(p(x))=

polynomial derivative p(x)eP,(R). Then the mapping (differentiation operator)
D:P(R)— P, (R) associates every polynomial p(x)e P,(R) with its derivative,
i.e. polynomial from Pn_l(R). This operator is linear, because derivative of a sum

equals to a sum of derivatives and derivative of a product of number and function
equals to a product of derivative and that number. Differentiation operator is not
injective (two polynomials with different constant terms have the same derivative)

and it is surjective (for any polynomial p,_,(x) there is an original — polynomial from
the set of primitives I p,(x)dx+C, where C is arbitrary constant). Therefore

differentiation operator is not bijective and consequently it is noninvertible.

Integration operator {:P,_ (R)— P,(R), which associates polynomial

p,.(x)e P_ (R) with polynomial

p.(®)=[p, () dr,

is also linear (by properties of integral). This operator 1s injective (from the equality
of images by the differentiation by the upper limit of integration we will obtain the

equality of originals) and it is not surjective (polynomial with nonzero constant term
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has no original). Therefore, integration operator is not bijective and consequently it is

noninvertible.
13.1.4. Matrix of Linear Mapping

Consider A:V —>W — linear mapping of n-dimensional space V onto
m -dimensional space W . Fix in space V arbitrary basis (e)=(e,,....e,), and in space
W basis (f)=(f,,...,f, ). Linear mapping is unambiguously determined by images of
basis vectors (Property 8). Decompose images 4 (e,), i=1,...,n of basis vectors (e)

by basis (f):
Ae)= Zaﬁfj , i=L..,n.
=1

From the coordinate columns #(e,),...,A4(e,) relative to basis (f) compose

matrix of sizes mxn:
A= + . . (13.1)

It is called matrix of linear mapping A in bases (e) and (f), or relative to

bases (e) and (f). Matrix of mapping is also denoted by (ﬁf), to emphasize its

dependency on the chosen bases.

Matrix of mapping associates coordinates of image w = 4(v) and original v.
Ifv=(v, - v)is coordinate column of v, and w=(w, - w,) is coordinate
columnof w (ie. v=ve +..+ve and w=wf +..+w £ ), then

v,
=« T : & w=Av, (13.2)

where A is matrix (13.1) of mapping A .
To find matrix of mapping «/:V —> W it is necessary to make the following

steps:
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1) specify bases (e)=(e,,...,e,) and (f)=(f,,....f ) of spaces V and W
2)find image 4 (e,) of the first basis vector and decompose it by basis (f).

Obtained coordinates are written to the first column of matrix (13.1) of mapping
A

3) find image A (e,) of the second basis vector and decompose it by basis (f).
Obtained coordinate are written to the second column of matrix (13.1) of mapping
and etc. In the last column of matrix (13.1) we should write the coordinates of

image 4 (e,) of the last basis vector.

Properties of Linear Mapping Matrices

For fixed bases of linear spaces:

1) matrix of sum of linear mappings equals to the sum of their matrices,

2)matrix of multiplication of a matrix by a number equals to a product of
mapping matrix and the same number,

3) matrix of an inverse mapping is inverse matrix of the mapping;

4) matrix of mapping composition C =A o B equals to the product of mapping
matrices: C =BA.

13.1.5. Kernel and Image of Linear Mapping

Kernel of linear mapping A :V — W is a set of such vectors veV, that

A(v) =0y, 1.c. set of vectors from V , which are associated with zero vector of space

W . Kernel of mapping £ : V — W is denoted by:

Kercﬁz{v:veV,of(v):ow}.

Image of linear mapping #A:V — W is set of images 4 (v) of all vectors v

from V. Image of mapping 4/ :V — W is denoted by Im &/ or A(V):

ImA=AV)={w:w=cA(v), VveV}.

Note, that symbol Im 4 should be distinguished from Imz — imaginary part

of a complex number.
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Examples of Kernels and Images of Linear Mappings

1. Kernel of zero mapping 0:V — W is whole space V and image consists of

the only zero vector, i.e. KerO=V, Im0={o, }.
2. Consider mapping «:V—>R", which associates every vector v of
n-dimensional linear space V its coordinate column v=(v, --- v )" relative to the

given basis e,,...,e . Kernel of this mapping is zero vector o, of space V, because it
is the only vector, that has zero coordinate column ae(ov)z oeR"”. Image of

mapping & equals to the whole space R”, since the mapping is surjective (every

column of R” is a coordinate column of some vector in space V).

3. Consider mapping proj-:V, = R, which associates every vector v of three-
dimensional space V, of geometric vectors with algebraic value proj (v)=(v,i) of

its orthogonal projection to the axis, which is formed by vector 7 , i.e. to abscissa axis

7. Kernel of this mapping is set of vectors Lin(7, k), which are perpendicular to

vector 7 . The image is the whole set of real numbers R .

4. Consider mapping D: P,(R)— P, (R), which associates every polynomial
or order not greater than n with its derivative. Kernel of this mapping is set £, (R) of

zero-ordered polynomials and image is whole set £, (R).

Properties of Kernel and Image of Linear Mappings

1. Kernel of any linear mapping A#:V—>W is a subspace:

{o,}<KerA <V.
2. Image of any linear mapping </ : V —> W is a subspace: Im A <W.

Since kernel and image of linear mapping are linear subspaces (Properties 1 and 2), it
is possible to speak of their dimensionalities.

Nullity of linear mapping is dimensionality of its kernel: d =dim (Ker A ),

and rank of linear mapping is dimensionality of its image: rg of =7 =dim (Im f ).
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3. Rank of linear mapping equals to the rank of its matrix (defined relative to
any basis).

4. Linear mapping o :V — W is injective if and only if Ker o = { oy }, in
other words, when nullity of mapping equals to zero: d =dim (Ker A ) =0.

5. Linear mapping o : V — W is surjective if and only if Im o/ =W, in other
words, when mapping image rank equals to image space dimensionality:
r=dim (Im A )= dimW.

6. Linear mapping f:V — W is bijective (and invertible) if and only if
Ker A ={0,} and Im &/ =W simultaneously.

7. Sum of kernel and image dimensionalities of any linear mapping

A :V —> W equals to the dimensionality of originals:
dim (Ker /) + dim (Im o/ ) =dim V. (13.3)

8. Linear mapping «f :V — W is bijective (and invertible) if and only if its
matrix is invertible (determined for any basis). Invertible linear mappings are also

called nonsingular (meaning non-singularity of its matrix).

13.2. LINEAR TRANSFORMATIONS (OPERATORS)
13.2.1. Definition and Examples of Linear Transformations

Linear transformation (linear operator) of linear space V is linear mapping
A :V—>V of space V onto itself.

Since linear transformation is a particular case of linear mapping, all properties
of linear mapping are applied to it (injectivity, surjectivity, bijectivity, invertibility,
kernel, image, nullity and rank and other notions).

Matrix of linear transformation A :V — 'V in basis e,...,e, of space V 1s a
square matrix A4, formed by coordinate columns of basis vector images

A(e,),...,A(e,), which are found relative to basis e, ,...,e

n
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Matrix of bijective linear transformation is invertible, i.e. nonsingular.

Therefore, bijective (invertible) transformations are called nonsingular.
13.2.2. Matrices of Linear Transformation Relative to Different Bases

Let’s show the connection between matrices of linear transformation relative to
different bases.

Let linear transformation A :V —V have in basis (e)=(e,,....e ) matrix A
(€)

and in basis (f)=(f,....f ) — matrix (fA) If S is transition matrix from basis (e) to
basis (f) then

A=STAS. (13.4)
() (e)

This formula demonstrates, that matrices of linear transformation in different
bases are similar (sect. 6.2). And vice versa, every pair of similar matrices are

matrices of some linear transformations, which were found relative to different bases.

EXERCISES

1. Find kernel and image of the linear transformation o/ : R’ —R’, which

matrix in standard basis of space R’ has the following matrix

0 1 1
A= 1 1 0.
-1 0 1

Determine, whether this transformation is injective, surjective, bijective, invertible.

1 2
2. Linear transformation of : R* — R? in basis g, = [2] , Oy = [3) has matrix

35 3 4
A=(4 3] and linear transformation B:R* —R? in basis b, ={1],b2 =[2] has

4 6
matrix B = {6 9]. Find matrix of transformation o/ + 8 in basis b,,b, .
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