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PART I. LINEAR ALGEBRA

CHAPTER 1. MATRICES AND MATRIX OPERATIONS

1.1. NUMERICAL MATRICES

An m xn matrix A is a set of m ■ n numbers, represented by a rectangular 

array of m rows and n columns:

an a\2 • аи^
a 2i ®22 • a2n or иии

Kaml аш2 • amn J

Numbers, which form the matrix, are called matrix elements. atJ -  element, that is

placed on the intersection of the i -th row and the j  -th column. Matrix elements are

expected to be real numbers.

Example 1.1. Determine matrix sizes m and n :

n 0" /
A = 2 3 , B =

v4 2,
V

1 0 4 2" 
3 6 8 1,

c = (l 2 3), d
/1Л

v2,

□  Matrix A has sizes 3x2,  matrix £ - 2 x 4 ,  c -  1 x 3, £ - 2 x 1 .■

Two matrices A and В are called equal (A = В ) if they have the same sizes 

(mxn) ,  and their corresponding elements are equal:

ау = ьу> i = j  = \,...,n.

In general case, a matrix (with sizes mx n )  is called rectangular. In particular, 

if a matrix consists of a single column (n = 1) or a single row (m = 1), it is called 

column-matrix or row-matrix (or simply column or row) respectively. Row-matrices 

and column-matrices are frequently denoted by lowercase letters (in example 1.1: c -  

row, d -  column). A matrix of sizes lx l  is simply a number (the only element of a 

matrix).

Matrix with the same number of rows (m ) and columns (n) is called square 

matrix (of n-th order). Elements au ,a22,...,ann form the main diagonal of square



matrix (dashed line on Fig. 1.1 which connects the upper-left comer of the matrix 

(element an) with the lower-right comer (element ann)). The diagonal, which

connects the lower-left comer (element anX) with the upper-right comer (element 

aXn), is called secondary.

ax j a]n Л Secondary diagonal
' n

'v ;
v anl' 'ann J Main diagonal

Figure 1.1

Square matrix

4 i 0 0 >

A =
0 a 22 0

, 0 0 a ,nn J

with zero non-diagonal elements is called diagonal, and denoted by

diag(an,a22,...,am).

A special case of square matrix is a matrix

' 1  0  ... (Г
0  1 ... 0

ч о 0  ... 1 ,

which is called identity (of n -th order) matrix. It is denoted by E (or En).

If all elements of a square matrix which are situated below (above) main 

diagonal are equal to zero, such a matrix is called upper-triangular (lower- 

triangular). Fig. 1.2 demonstrates diagonal and triangular matrices (now and later we 

will suppose that matrix’s part denoted by О symbol consists of zero elements, and 

parts denoted by * symbol and lines consists of arbitrary elements). Notice that a 

diagonal matrix, particularly an identity matrix, is a lower and an upper-triangular 

simultaneously.



Diagonal Upper-triangular Lower-triangular

□

4  O'

Figure 1.2

Matrix with all elements equal to zero is called zero matrix.

Example 1.2. Define matrix types

^ 1 2  1 ^
A =

0 0 0^
0  0  0

B = 0 4 5 
0 0 9

C =
( 0  ô i 

1 0
D =

r0
,0

0̂

0,
E =

0
0Л

A  o 0" f l 0 0" A 0 0"
F = 0 1 0 , G = 2 3 0 , H = 0 2 0

оо

К ,4 5 6, 0 К

A -  rectangular zero matrix of sizes 2x3; 

В -  3rd order upper-triangular matrix;

C -  2nd order lower-triangular matrix;

D -  2nd order square zero matrix;

E -  2nd order identity matrix;

F -  3rd order identity matrix;

G -  3 order lower-triangular matrix;
rdH -  3 order diagonal matrix. ■

1.2. MATRIX OPERATIONS

1.2.1. Matrix Addition

Let A = {atj) and В = (btJ) be matrices of the same sizes m x n . Matrix 

C = (cy) of the same sizes m xn  is called the sum o f matrices A and В if its 

elements are equal to the sum of the corresponding elements of matrices A and В :

cij=atj+btj> i = h - , m ;  j  =



The sum is denoted by С = A + В . Matrix addition is defined only for matrices of the 

same sizes and is calculated element-wise. From the definition it comes that it is

possible to sum only matrices o f the same sizes: e.g. it is impossible to find sums

AA 2 '
+

A 4, A
or (1 2)+

Example 1.3. Find the sum of two matrices

A 2 s ^ 0 n
A = 3 4 , B = 1 0

v5  6x . 0 0 ,

□  Adding the corresponding elements, we get

A 2N "0 12 "1 + 0 2 + Г f 1 3̂
c  = 3 4 + 1 0 = 3 + 1 4 + 0 = 4 4

,5 6x 0, 45 + 0 6 + 0y v5 6,v________ / v____ ____/ \__________________ /
(3x2) (3x2) (3x2)

1.2.2. Multiplication of Matrix by Number

A product o f a matrix A = (я ) and a number X is the matrix C = (ctJ) of the

same sizes as matrix A which elements are equal to the product of number X and the 

corresponding element of matrix A :

crj=X-air i = l,...,m; j  = \,...,n.

Product is denoted by X ■ A or A ■ X . Multiplication of a matrix by a number is 

done element-wise. It is possible to multiply any matrix by a number: each element 

should be multiplied by this number.

Example 1.4. Find the product of matrix A =
A  2^ 
3 4 
5 6

and number 2

□  Multiplying each element of matrix A by 2 we get



С = 2- А = А-2 = 2-
1 2" ' 1 - 2 2-2" " 2 4 N

3 4 = 3 - 2 4 - 2 : 6 8 . ■

5 6 , v5 ' 2 6 - 2 y v10 Я

Matrix (-1) • A is called opposite matrix of A and denoted b y (-r i) . Sum of 

matrixes В and {-A)  is called difference and denoted byB - A .

To find difference B -  A it is necessary to subtract elements o f matrix A from 

the corresponding elements o f matrix В . Subtraction is correct only for matrixes o f 

the same sizes.

Example 1.5. Let

A  2" "0 n
A = 3 4 , B = 1 0

v5 6,

Find differences B -  A and A -  В .

□  Subtracting the corresponding elements, we get

"0 n 2s "0-1 1 - 2 ' f - 1 - n
B - A  = 1 0 — 3 4 = 1-3 0 - 4 = -2 -4

4° v5 6, v0 -5 0 - 6 y v-5 ~6y

f 1 2" "0 n "1-0 2 - П (1 n

1 to II 3 4 — 1 0 = 3-1

оl = 2 4

v5 6, 4° Ul 1 о 0 1 о V5 6У

Linear matrix operations

There are two linear matrix operations:

1) matrix addition;

2) multiplication of a matrix by a number.

Properties of linear matrix operations coincide with the properties of addition 

(subtraction) of algebraic expressions (e.g. polynomials) and multiplication of an 

algebraic expression by a number.



For any matrices А, В , C of the same sizes and arbitrary numbers a ,  P the 

following equations are correct:

1) A + B = B + A; 5) (а-Р)-Л = а-(р-Л);

2) (A + B) + C = A + (B + C); 6) 1 -A = A.

3) a-(A + B) = ct-A + a-B;

4) (ct + p)-A = a-A + p-A;

1.2.3. Matrix Multiplication

Let matrix A = {af) of sizes m x p  and В = (Zx) of sizes p x n  . A matrix C of 

sizes mxn  with elements ctj that are calculated by the following formula

c ij = aa • b i j  + а г2 -b2J+... + aip • bpj, i = ; j  = ,

is called a product of matrices A and В and denoted by С = AB .

Multiplication of matrix^ by matrix В is defined only for consistent matrices, 

i.e. matrices that satisfy the following property: number of columns of matrix A is 

equal to number of rows of matrix В :

С -  A - В .
mxn mxp pxn

Let’s consider the procedure o f finding a matrix product in detail.

To find the element ctj on the intersection of the i -th row and the j  -th column

of matrix C it is necessary to separate out the i -th row of matrix A and the j  -th 

column of matrix В . They consist of the same number of elements because 

matrixes A and В are consistent.

Then it is required to find the sum of all pairwise products of the corresponding 

elements: the first element of the i -th row is multiplied by the first element of the 

j  -th column, the second element of the / -th row is multiplied by the second element

of the j  -th column, and etc. Finally, the results are summed up.

In the product A ■ В matrix A is called the left-side multiplier for В , and it is 

said that matrix В is multiplied by matrix A from the left. In a similar manner matrix



В is called the right-side multiplier for A , and it is said that matrix A is multiplied 

by matrix В from the right.

Note that in general case А-В ф В ■ A , but there are square matrices which 

product is unaffected by multiplier permutation.

Matrices A and В are called the permutation matrices if

A-B = B-A.

Permutation matrices can only be square matrices of the same order. In particular, it 

can be showed that diagonal matrices of the same order are permutation matrices.

For every square matrix A of order n the following equations are correct:

A-E = E-A = A
where E is an identity matrix of order n . In other words, an identity matrix and any 

square matrix of the same order are permutation matrices.

For every matrix^ the following equations are correct

A-0  = 0  and О ■ A = О

where О is a zero matrix of the appropriate order, i.e. a square zero matrix and any 

square matrix of the same order are permutation matrices.

Properties of matrix multiplication

Let X be an arbitrary number; А, В , C -  arbitrary matrices for which the 

operations of multiplication and addition on the left side are defined. Then the 

operations on the right side are defined and the following equations are correct:

1) (A-B)-C = A-(B-C);

2) A-(B + C) = A-B + A-C;

3) (A + B)-C = A-C + B - C ;

4) X \ A - B )  = {X-A) -B.

Example 1.6. Let A =
T 2  Г
0  1 2

, B  =
1 (Л 
0 1 

i b

. Find products A ■ В and В - A .

□  By the definition of matrix multiplication we get



f l 2
A - В

‘-V-' ‘-V-1 0 1
2x3 3x2 V

n 0 ^

В - A = 0 1
L.у—1 l— »
3x2 2x3 1 1 ,

(1 (Л
О 1

vl 1

f\ 2 О
О 1 2

fl-  1 + 2-0 + М  1-0 + 2-1 + 1-Г
0-1 + 1-0 + 2-1 0-0 + 1-1 + 2-1

'2 3"

2x2

' l - l  + O-O 1 - 2 + 0 -1 1-1 + 0-2n f  1 2 n
0-1 + 1-0 0 - 2 +1 -1 0-1 + 1-2 = 0 1 2

4M  + l-0 1-2 + 11 1-1 + 1-2, v1 3
3x3

Both products А • В and В-A are defined, but they are matrices of different sizes, i.e. 

А - В ф В-А.  u

Example 1.7. Let

f l 2 n
^Xĵ

,0 1 2 y
, x = x2 ,

\ хзу

A =

Find the products A-x ,  b-x,  x - b .

□  By the definition of matrix multiplication we get

, * = ( 1 2 3).

A • x =
‘-V-1

' l  2 Г f
• x9 =

ч0 1 2, Z
V

yX3 f

f  1 ■ xl + 2 • x2 +1 • x3  ̂
0 • Xj +1 • x2 + 2 • x3 y

+ 2x2 + x3
 ̂ x2 i 2x3 ^

2x1

b - x = (  1 2 3)SH
1x3 3x1

f  x ^
X„

у

= (l • Xj + 2 • x2 + 3 • x3) = Xj + 2x2 + 3x3;
lxl

X̂j 2Xj 3x^
X b = x2 ■(1 2 3) = x2 2x2 3x2
3x1 1x3

f * 3 2x3 3x3y
3x3

Example 1.8. LetH =
(\  2\
3 4

B =
( 0  0  ̂

1 1
E =

f l  0 ^
0 1

0 =
^ 0  0 ^

Find

the products А - В , В -A, A- E , E -А, В -О, О - В .

□  All the matrices are the 2nd order square matrices. Hence, all products will be 

square matrices of the same order.



By the definition we get 

A ■ B =

B ■ A =

(1 2 ̂ ( 0 0 1 (1 ■ 0 + 2 ■ 1 1 ■ 0 + 2 ■ 1 ̂ ( 2 2 ̂
v 3 4 X v1 1У v 3 ■ 0 + 4 ■ 1 3 ■ 0 + 4 ■ 1, v4 4 J
( 0 0 1 (1 2 1 "0 ■ 1 + 0■3 0 ■ 2 + 0 ■ 4" ( 0 0 1

A ■ E =

E ■ A =

v1 1) v3 4) vJ  ■ 1 +1 ■3 1
A ■ E = E ■ A = A ;

(1 2 ̂ (1 0" (1 ■ 1 + 2■ 0 1
v 3 4 у v 0 1 у v 3 ■ 1 + 4■ 0 3
(1 0 ̂ (1 2 ̂ (1 ■ 1 + 0■ 3 1
v 0 1 у■v 3 4 x v 0 ■ 1 +1 ■ 3 0

A O =O and O ■A =

v4 6,

( 1 2 ̂ 
v3 4x
( 1 2  ̂
, 3 4)

B ■ O =
(0 01 
1 1

(0 01 
0 0

(0 0̂  
v0 0x

O ■ B =
(0 01 
0 0

(0 01 
1 1

(0 0̂  
v0 0x

Example 1.9. Find the products A ■ B and B ■ A :

a) A = (1 2 3), B
( 41 ( 1 2 " ( - 1 3̂

5 ; b) a =
v3  1 X

, B =
v 1 1 X, 6

c) A B
-4 -1

v - 2  1У

(6  1 1  

v2  1

□  a) The product A ■ B is a number:

( 4 1
A ■ B = (1 2 3 )

d) A
(3 2
v0 1 B = (1 3 )

1x3

(1 ■ 4 + 2 ■ 5 + 3 ■ 6 )= (32) = 32,

v6)
1X T

1x1

rdbut the product B ■ A -  is the 3 order square matrix:

B ■ A:
( 41

( 4  4  4  ■ 2  4 ■ 31 (NOO

5 ■( 2  3)= 5 ■ 1 5 ■ 2 5 ■ 3 = 5 10 15
, 6 1X3 6  ■ 1 6  ■ 2 6  ■ 3 6  1 2  18,
3x1 3x3

It is obvious that A ■ B ф B ■ A ;



b) A ■ B =
(1 2Л (-1 3' (1 ■ (-1) + 2 ■ 1 1 ■ 3 + 2 ■ 1" 1 5'
v3 1, V1 1, V  ■ (-1) + 1 -1 3 ■ 3 + 1 -1, 4-2 1°, ’

2x2 2x2 2x2

B ■ A =
(-1 3' (1 2' ((-1) 4 + 3 ■ 3 (-1) ■ 2 + 3 ■Г (8 1'
V  1, v3 1, v 1 ■ 1 + 1 ■ 3 1 ■ 2 + 1 ■ 1 , v4 3,

2x 2 2x 2 2x 2

Both products are square matrices of the same order, but A ■ B ф B ■ A ; 

c) A ■ B
(6 1' (-4 -1' (6 ■ (-4) +1 ■ (-2) 6 ■ (-1) +1 ■ 1" (-26 -5'
V  Г v-2 ^ V  ■ (-4) + 1 ■ (-2) 2 ■ (-1) + 1 1 4-10 -1 /

2x2 2x2 2x2

B ■ A
(-4 -1' (6 1" ((- 4) ■ 6 + (-1) ■ 2 (-4) ■ 1 + (-1) ■ 1" (-26 -5'
V-2 l v (-2) ■ 6 + 1 ■ 2 (-2) ■ 1 + 1 - 1 , i 0 1

2x2 2x2 2x2

The results of multiplication are equal, i.e. A ■ B = B ■ A ; 

d) the product A ■ B cannot be found because the number of columns of matrix 

A (three) is not equal to the number of rows of matrix B (one). So, it is impossible to 

multiply matrix A by matrix B from the right. At the same time, it is possible to 

multiply matrix A by matrix B from the left:

B ■ A = (1 3)'(3 2 1 ' 
0 1 2 = (1 ■ 3 + 3 ■ 0 1 • 2 + 3 ■ 1 1 ■ 1 + 3 ■ 2) = (3 5 7).

1x2 1x3
2x3

Example 1.10. Find (A ■ B )■ C , A ■(B ■ C ), A ■(B + C), A ■ B + A ■ C ,

(1 2 ' 
3 4if A 

□  Let’s find

(A ■ B )■ C =

A ■(B ■ C) =

B
5 6' 
7 8 C

(1 0 ' 
0 2

1 (1 2' (5 6' __
1 (1 0' (19 22" (1 0' (19 44 '__

1 v3 v7 8, V0 2y v43 50, v0 2, v43 100y

(1 2 ̂ 1 (5 6' (1 0' __
1 (1 2' (5 12 ̂ (19 44 '

v3 4y v7 8, v0 2, v3 v7 16 / v43 100y



А-(В + С)
A  2' "5 6 ' A  O' "1 2" ' 6 6 ' "20 26"

+ = =

,3 4, J  8 , ,0  2 , 3 4̂ J ■J 10, V4 6  5 8 У

А-В + А-С
"1 2" ( 5 6" f l 2' a O' A9 22s n 4" "20 26"+ • = + =

V3 4 у J 8y 4, 2, ,43 50, v3 8y 446 58,

Note that (А-В)-С = А-(В-С)  and А-(В + С) = А-В + А - С . ■

Power of matrix

Multiplication A -A (matrix A by itself) is defined for any square matrix A (of 

order n ). So, it is possible to define any integer nonnegative power o f a matrix, as

A0 = E , A1 = A, A2 = A-A,  A3 = A2 - A,... ,  Am=Am~l - A , ....

Note that the ordinary properties of a power with natural index are correct:

Ak -A1 = A1 -Ak = Ak+l, (Ak) l= Akl.

Polynomial of matrix

Having defined the operations of matrix addition, multiplication by a number, 

and power of a matrix it is possible to get polynomial of matrix. Let 

pm(x) = a0 + avx + a2x2 + ... + amxm be a polynomial (power m ) of variable x where 

A is a square matrix of order n . Expression

Рт(Л) = aoE + axA + a2A2 +... + amAm
A0

is called the polynomial o f a matrix A . Polynomial pm(A) is a square matrix of the 

n -th order.

f l  T\ 
1 1

Example 1.11. Find A3 given that A 

□  By the definition of a power of a matrix we get

A3 =
A  2 '

3
A  2 ' A  2 ' A  2 ' " 3  4 " A  2 ' " 7  1 0 "

, 1  1 , , 1  1 , , 1  к , 1  к 2  3 , 1  1 ,



Example 1.12. Find p2(A) given that p2{x) = x2 -  5x + 3, A = 

□  Using the definition of the polynomial of a matrix:

f  2 - Г  
-3 3

P2(A) =
' 2 - Г r 2 -Ui

.-3 3 , -3 3 ,

7 -53 f 10
-15 12, v-15 V.

2  -13
-3 3

+ 3-
1 0  

0  1

^  (3 03 (о 03 
+

У Vv0 3

1.2.4. Matrix Transposition

0  0

For any matrix

A =

a matrix

A7

^ flfjj al2 • • • Gyn  ̂

^21 a22 ’ ’ ‘ ®2n

\ a m\ a m2 '  " a mn J

ran a2l- -am̂

a\2 a22 ' ' ' am2

CL СЦ Cl\  In 2n mn J

у

which can be obtained from matrix A by replacing its rows with the corresponding 

columns or the columns by the corresponding rows. This matrix is called a 

transposed matrix.

To get matrix AT from a given matrix A , the first row of matrix A is written as 

the first column of matrix AT, the second row of matrix A is written as the second 

column of matrix AT, and so on. This operation is called the transposition of matrix 

A.

A  square matrix is called symmetric if

AT = A ,

and antisymmetric if

AT =-A.



The elements of a symmetric matrix, placed symmetrically with respect to the 

main diagonal, are equal. The elements of an antisymmetric matrix, placed 

symmetrically with respect to the main diagonal, have opposite signs and all the 

diagonal elements are equal to zero.

Properties of transposition operation

Let X be an arbitrary number, A, В -  arbitrary matrices for which operations 

of matrix addition and multiplication on the left side are defined. Then the operations 

on the right side are defined as well and the following equations are correct:

1) (X-A)T =X-AT;

2) (A + B)T =AT + BT-

3) (A-B)T =BT -AT;

4 ) (AT)T = A .

Example 1.13. Find AT, BT, CT, for

f  ° 4 S ' ) f  1 4 5Л
( i 2 31A = , B = -4 0 6 , c  = 4 2 6
0 1 2\

2x3

/
1.5 -6 o j 1.5 6 3 J

□  By the definition during the transposition the first row of matrix A becomes the 

first column of matrix AT, the second row becomes the second column:

n 0 ^

AT = 2 1

(3><2)

Similarly, we get

r 0 -4 5 ^ f  1 4 5Л
BT = 4 0 -6 . CJ = 4 2 6

v- 5 6 v5
6

As BT = - B , it means that В is antisymmetric. As CT = C , it means that C is 

symmetric. ■



Example 1.14. Find matrices (X-A)J , X-AT, (A + B)T, Аг + BT, (A- В )

BT-AT, (AT)T, for ^ = 2, A = 

□  We have

(2 - ^  =

{A + B)T =

f \ 2^ 
3 4

5  =
5 6"

V2  8 ,

f f  i 2 ' 'Y "2 4 ' T '2 6 '
2 -

V ,3 4 J./ v6 8 ,
—

,4 8 ,

( \  2\  (5 6Л 
+

-\T

3 4 7 8
^6 8 Y f  6 10Л
10 12 8 12

( A - B f  =
2 ' ("5 6)

Г "19 22" т "19 43"

,3 4,
00

v4 3  50У ч2 2  50У

Note that

2-AT =2-
( l  2 Y ( \  ъЛ

=  2 -
3 4 2 4

y f + £ r =

BT -AT =

(1 2 Y  (5 6Y ( \  Ъ\ 
+

7 83 4 V v v2  4 у
+

/" 2  6 ^
4 8

(" 5 7"i 
6 8

= ( 2 - 4

" 6  1 0 '  
v8 12,= (A + B)T,

' 5 6'2 "1 2"г "5 7" "1 3" "19 43"
J  8 , Y 4У чб 8У V2 4У ч2 2  50,

= (A'B)]

K ) r -
П 2 ^
3 4

r \ ( \  Ъ\
2 4

(\ 2Л

3 4
= Л,

i.e. (k-A)T =X-AT, (A + B)T =AT + BT, (A-B)T = BT ■ AT, (ATf = A .

1.2.5. Block Matrices and Block Matrix Operations

A numerical matrix A of sizes m x n divided by horizontal and vertical lines 

into blocks (cells), which represent matrices, is called a block (cell) matrix.

The elements o f a block matrix A are matrices AiJ of sizes mi x n f,

/ = 1,2,..., p , j  = 1,2 so that ml +m2 + ... + mp =m and nx + n2 + ... + nq=n .



The operations o f addition, multiplication by a number, and matrix 

multiplication for block matrices are performed by the same rules as for ordinary 

matrices, the only difference is that blocks are used instead o f elements.

If numerical matrices A and B of same sizes are equally split into blocks 

A = (AiJ) and B = (BtJ), then their sum C = A + B can be similarly split into blocks

C = ( Cj) , so that for each block the following equation is correct: Cj = Aj + Bj.

If a block matrix A = (Ay) is multiplied by a number, we get matrix

Ы  = AT = ( M y ) .

During the transposition of block matrix, we should transpose both the block 

structure and the blocks, e.g.

AT =
A a12 1

T ( AT  
A 11 AT  1  A 21

4 A 21 A 22 j AT1 ^ 1 2 AT  ^ 2 2  j

Example 1.15. We have the following block matrices

A
2 3
3 4
4 5

A 11 A 12

A 21 A 22
and B

1 1
0 1

2 1 2

3 0 1 j

B11 B 12

B 21 B 22

and B11

Find matrices C = A + B , D = 5B , BT .

□  Matrices A and B have blocks of equal sizes: blocks An and Bn have sizes 

m1 x n1 = 1 x 2; blocks A12 and B12 -  m1 x n2 = 1 x 1; blocks A21 and B21 -  

m2 x n1 = 2 x 2; blocks A22 and B22 -  m2 x n2 = 2 x 1.

Matrix C = A + B will have blocks of the same sizes: C
( C11 C 1 ^ 12

C^  21 Ĉ2 2  j
. For

each block we find:

C„ = A  + Bn =( 2 3) + (1 1) = (3 4); C12 = A12 + B12 =(4) + (0) = (4);

C 21 A 21 + B 21

(3 41 ( 2 1 1 ( 5 51
+ =

1 4 5  j i 3 0  j i 7 5  j
C 22 A 22 ^ B22 ( 51

(2 1 (71
+ =

i 6  j 1 1 j i 7  j

Hence, matrix C will have the following form:



(3 4 4Л
c  = 5 5 7

17 5 V

Cn ĉ1 2

c 2l ĉ2 2

Matrix D = 5B will have blocks of the same sizes as В :

Du =5Bn = 5-(\ 1) = (5 5); Dn = 5Bn = 5-(0) = (0);

A l = 5 A l = 5 '
А Г ' 1 0 52

. ” 5B„ ” 5 *
4o^

A oy o,
? 22  22

A ,

Therefore, matrix D will be

(5 5 °1
D = 1 0 5 1 0

4 0 V

D n D n

D 1X D 22

By the rule of block matrix transposition we get

BT = Bn BT21)
BTl2 BT22j

1 2 3
1 1 0

0 2 1

Multiplication of block matrices

Block matrices A and В are called consistent if decomposition of matrix 

A = (Aik) into blocks by columns is equal to the decomposition of matrix В = ^Bkj) 

by rows, i.e. blocks Aik have sizes mt x pk, and blocks Bk/ have sizes pk x n. 

(k = \,2,...,s). Consistent block matrices’ elements Aik and Bkj are consistent 

matrices.

Product С = A -В of consistent block matrices A and В is a block matrix 

C = (CtJ) which elements are calculated by the following formula:

q , = 4 i B\j + 4  2 A./ + • • • + 4  лA, •

It means that block matrices that are divided into blocks in an appropriate way 

can be multiplied by the common way. To get the block CtJ of the product, we need to

separate out the i -th row of blocks of matrix A and the j  -th column of blocks of



matrix B . Then we should find the sum of pairwise products of the corresponding 

blocks: first block of the i -th row is multiplied by the first block of the j  -th column, 

the second block of the i -th row is multiplied by the second block of the j  -th row,

and etc. Finally, the results of multiplication are summed up.

Example 1.16. We have block matrices

A
2 3
3 4
4 5

A 11 A 12

A 21 A 22
and B

1 1 0

2 1 2

3 0 1

B11 B 12

B 21 B 22

Find the product C = AB .

□  Matrix A is divided into blocks: A11 of sizes m1 x p 1 = 1 x 2; A12 -  m1 x p2 = 1 x 1; 

A21 -  m2 x p 1 = 2 x 2; A22 -  m2 x p 2 = 2 x 1. Matrix B is divided into blocks: B11 of 

sizes p 1 x n1 = 2 x 2; B12 -  p 1 x n2 = 2 x 1; B21 -  p 2 x n1 = 1 x 2; B22 -  p 2 x n2 = 1 x 1. 

Block matrices A and B are consistent. Matrix A is divided by columns into two 

and one (counting from the left), matrix B is divided by rows into two and one 

(counting from the above). Therefore, product AB is defined. Matrix C = AB will

have blocks C =
C11 Ĉ

1 2

C21 C22
For each block we get:

C 11 = A11B 11 + A 12 B 21 = ( 2  3)'
2  1

+ (4 )(3  0) = ( 8  5)+ (12 0) = (20 5);

С12 A11B 12 + A 12 B 22 ( 2  3 ) - f0)  + (4)-(l) = (6 ) + (4} = (10):
2  у

C 21 A21B 11 + A22B:21

(3 4 '
1 1 ' ( 5 '+

V4  5 у V2  У V 6  у
(3  0 )

( 1 1  7' (15 0 ' (26 7 '
+ =

V1 4  9у V1 8 0 у V3 2  9  У

С 22 A21B 12 + A 22 B 22

( 3 4 '  ( 0 '  
4 5V V 2  у

+
V 6  у

(1)=
8  '  

V1 0  у
+

V 6  у

(13 '  

V1 6  у



f  20 5
1 0 1 f

С = 26 7 13 =

V 32 9 1 6  J V

С11 С̂
1 2

С21 С22

\

J

1.2.6. Transforming a Matrix to Echelon Form

Elementary transformations of a matrix are the following transformations:

1. Swapping two columns (rows) of matrix.

2. Multiplying the elements o f a column (row) by the nonzero constant.

3. Addition o f the elements o f a column (row) multiplied by a constant 

to the elements o f another column (row).

Matrix B which is found from the initial matrix A by a finite amount 

of elementary transformations is called an equivalent matrix. It is denoted by A ~ B .

A square matrix obtained by a finite amount of elementary transformations 

from an identity matrix, is called an elementary matrix.

Echelon form o f matrix:

f  0  • 0 1 * * * * * •  * * * *

0  • 0 0 1 * * * * •  * * * *
0  • 0 0 0 0  • 0 1 * •  * * * *

: : : : : : : • •. : * * *

0  • 0 0 0 0  • 0 0 0 •  0 1 * *
0  • 0 0 0 0  • 0 0 0 •  0 0 0  • 0

0 0 0 0 0  • 0 0 0 •  0 0 0  • 0

The height of each "step" is a row, symbol " 1 " denotes unity elements of a 

matrix, symbol " *" denotes arbitrary elements, other elements are equal to zero.

Any matrix can be transformed into echelon form. It is enough to use 

elementary transformations o f matrix’s rows.



Remarks.

1. Matrix is also in echelon form if the elements denoted as "1" in (1.1), are 

arbitrary nonzero numbers.

2. It is considered that zero matrix is in echelon form.

Algorithm for transformation matrix to echelon form

To bring a matrix to echelon form (1.1) we need to make the following 

operations:

1. Choose a nonzero element (pivot element) in the first column. If the row 

with the pivot element (pivot row) is not the first, it should be placed on the first 

place (transformation of the I type). If the first column has no pivot element (all 

elements are equal to zero), this column is excluded and we continue the search of 

the pivot element in the remaining part of the matrix. Transformations finish when 

all columns are excluded or all elements in the remaining part of the matrix are 

equal to zero.

2. Divide the elements of the pivot row by the pivot element (II-type 

transformation). If the pivot row is the last, transformation procedure should be 

ended.

3. All the elements of the pivot row should be multiplied by a coefficient and 

added to all rows below (transformation of the III type). The value of the 

coefficient is chosen in order to nullify elements below the pivot elements.

4. After the exclusion of the row and the column that have the pivot element 

we return to step 1 , and all operations should be applied to the remaining part of 

the matrix.

Example 1.17. Bring matrix to echelon form

A =
3 9 
2 4

B =
0  2  

2 4

" 2
3"

, C = 3 5
6 / v6 b

□  In the first column of matrix A we choose the pivot element an = 3 ф 0. Divide all

elements of the row by an = 3 (or multiply them by —  = - ) :
an 3



А =

Add the first row multiplied by (-2) to the second row:

f i 9 ^ ' l  3'

2 4y V2 4,

3N(-2) f l  3 1
, 2 4, J

<N1О

The first row and the first column are now excluded from further examination. 

There is the only element ( -2)  in the remaining part of the matrix which is chosen as 

a pivot. Dividing of the last row by the pivot element we get matrix in echelon form

a 3 ' f  1 3"
- 2 1° i j

Transformations are finished because the last pivot element is situated in the 

last row. Note that the obtained matrix is upper-triangular.

In the first column of matrix В we choose the pivot element b2l = 2 Ф 0, swap

rows, and divide elements of the pivot row by the pivot element 2  :

B =
0 2 3'
2 4 6

1  4 6 '
0 2 3

1 2  3 
0 2 3

There is no need to make step 3 of the algorithm because of the zero element 

below the pivot element. We exclude the first row and the first column from the 

examination. There is the pivot element 2 in the remaining part. Dividing the second 

row by 2  we get the echelon form of the matrix

В

Transformations are finished, as the pivot row is the last.

In the first column of matrix C we chose the pivot element cn = 2 ф 0. The

' l  2  3' " 1 2  3 "

v° i  3, ч° 1 L5y

first row is the pivot. Divide its elements by cn = 2 and get

(Ш 4l "1 2"
c  = 3 5 ~ 3 5

6 7'v J ,6 ь



To the second and to the third row we add the first one multiplied by (-3)  and 

( - 6 ) respectively:

0  2' 
3 5 
6  7

(~3) ( - 6)
J
◄—

ll 2 \
0
0

-1
-5

Pay attention that the obtained matrix is not in echelon form yet, as the second 

step is formed by two rows (second and third) of matrix. After the exclusion of the 

first row and the first column we search the pivot element in the remaining part. This 

element is (-1). We divide the second row by (-1), and add the pivot row, multiplied 

by 5, to the third row:

f 1 2  > (\ 2 N " 1  2 ^
0 a ~ 0 1 (5)~ 0  1

0
V

-5 7 - 5 , J , 0

We exclude the second row and the second column from the examination. 

Further transformations are impossible because all columns are excluded. The 

obtained matrix is in echelon form. ■

Algorithm for transformation matrix to reduced echelon form

If we continue making elementary row transformations, it is possible to 

simplify the matrix and transform it to reduced echelon form.

f °  ■
• 0 11 0 *  • . * 0 * . * 0 *  . . *

0 • • 0 0 1 *  • . * 0 * . * 0 *  . . *

0 • • 0 0 0 0 • • 0 1 * . * 0 *  . . *

• • • • • • • ... •

0 *  . . *

0 • • 0 0 0 0 • • 0 0 0 • • 0 1 *  . . *

0 • • 0 0 0 0 • • 0 0 0 • • 0 0 0 • • 0

,0 • • 0 0 0 0 • • 0 0 0 • • 0 0 0 • • 0



Symbol «1» denotes elements which are equal to one, symbol «*» denotes 

elements with arbitrary values, other elements are equal to zero. All the other 

elements in a column with «1 » are equal to zero.

Example 1.18. Bring the matrix to reduced echelon form

' 0  1 1 1 1 Г
0 0 0 1 2 1

A =
0 0 0 0 1 0

v0 0 0 0 0 0y

□  Matrix is in echelon form.

Add the third row multiplied by (-1) to the first row, and the third row 

multiplied by (-2 ) to the second row:

f°
1 1 1 1 1) ◄----- (0 | 1 1 1 0 n

0 0 0 1 2 1 *1 0 0 0 1 0 1

0 0 0 0 1 0 (-2 ) (- 1) 0 0 0 0 1 0

1° 0 0 0 0 1° 0 0 0 0 oj

Now we will add the second row multiplied by (-1) to the first row. As the 

result, we will obtain matrix in reduced echelon form (1 .2 ):

f° 1 1 1 0 n * 1 (0 1 1 0 0 (Л
0 0 0 1 0 1 (-1) 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 0 1 0

U 0 0 0 0 oj lo 0 0 0 0 oj

Algorithm for transformation matrix to the simplest form

Any matrix by the elementary transformations (of rows and columns) can be 

reduced to the simplest form.

f 1 '

✓-------
оо

 
•• 

о

0  •

о

•• 
о

'Е , O '
0  •

ооо

, о  О,

/* о
 

•••

о
 

•••
С**")

 
• • •

о
 

•••
V тУ-п



The upper-left comer of the matrix is an identity matrix of order r 

(0 <r< min {m; n}), other elements are equal to zero. It is considered that zero matrix

is always in the simplest form ( r = 0 ).

Any matrix can be reduced to the simplest form by the elementary 

transformations o f its rows and columns.

Example 1.19. Bring matrix^ =
1 2 3
2 4 5

to the simplest form.

□  Let’s choose the element an = 1 as the pivot element. Add the first row multiplied 
by ( - 2 ) to the second row:

A =Г0 2  3NH ) _ ' 1 2  3^

u 4 5y J о 0 1

Then we add the first column multiplied by (-2) to the second row and the 

first column multiplied by (-3) to the third row:

(Ш 2
3 ] fi1

0 ° 3

l o 0 - i j l o 0 ^ i J

ПН
(-3)—

Multiply all elements of the last column by (-1), and switch it with the second 
column:

1  o oW i о (Л
0  0  - f

(-!)
, 0  1, 0

Thus, the initial matrix A is reduced to the simplest form (1.3) by elementary 

transformations. ■

1.2.7. Trace

The trace of a square matrix is a sum of the elements of its main diagonal. 
A trace of a square matrix A of order n is denoted

n

tr л = Y ^u  ■
2=1



For any square matrices А, В , C of the n- th order and vectors x ,y  of sizes

и x 1 the following properties are correct:

1) tr (A + B) = tr A + tr В ;

2) tr A = tr AT;

3) tr (ATB) = tr (b tA) = tr (ABT) = tr(BAT);

4) t r ( x - / )  = xr -y;

5) tr (AxxT) = xTAx;

6 ) tr (ABC) = tr (BCA) = tr (CAB) ;

7) t t , aA = t r ( ABT)-
i=i J=1

Matrix trace A is also denoted sp A .

Example 1.20. Given that A
n 2'

, 5  =
Г5 6'

, c  =
'9 10'

,3 4 , 0 8 , v ll 12,
and

x =
f 1) 

A A
illustrate correctness of properties of the trace of a matrix.

□  1) try4 = l + 4 = 5 , t r 5  = 5 + 8  = 13, tr^4 + tr£  = 18,

tr (A + B) = tr
6 8 
10 12

= 18:

2) tr A = 5, tr AT = tr
(\ ЪЛ
2 4

3) tr (а?в )  — tr
f l  3}
2 4

tr (b tA) = tr

tr (ABr ) = tr

6 8

V 1 2 ^
,3 4,

'5 6  ̂
7 8

5 7̂1 ( l  2Л
3 4

= 5:

= tr

= tr

5 T
6 8 ,

= tr
V

(26 30  ̂
38 44y

Г26 38  ̂
30 44y

0 7  23Л

= 26 + 44 = 70.

= 26 + 44 = 70.

39 53
= 17 + 53 = 70,



tr К  ) tr
f 5 6' f 1 3' _1 f 17 39'

и n

V7 8 , 2 4 Vz 4J 1__ V23 53у
17 + 53 = 70;

4) tr {xyT ) = tr

x y = X1 2 )

V 2 у

f  3 '

X3 4) = tr 3 4 

6 8
= 3 + 8 = 11.

v 4 у

5) tr {AxxT ) = tr

1 • 3 + 2 • 4 = 11;

f  1 2 Y 1 '

3 4 2JVZJ
X1 2)

x ’Ax = {1 2)
1 2 

3 4

1
= X1 2 )

= tr

f

V11J

f  1 2 Y 1 2 '

3 4JV2 4
= tr 5 10 '

11 22
= 27

J

= 27;

6) tr {ABC) = tr

tr {BCA) = tr

tr {CAB) = tr

V̂  ^JV^J

f  1 2 Y  5 6 Y  9 10 '

7 83 4 JV JV11 12

f  5 6 Y  9 10 Y  1 2 '

7 8 11 12JV 3 4 J

tr

= tr

413 454

937 1030
1443.

f 477 710Л

V  JV

f 9 10 Y 1 2 ' f  5 6 '

649 966
= 1443

11 12 V3 4J V7 8 J
tr

f 601 698'  

725 842
1443;

2 2

7) Ш ,  = 1 • 5 + 2 • 6 + 3 • 7 + 4 • 8 = 70 = tr {ABT ).

EXERCISES

г=1 j=1

1. For A =
f m n л

, B =
f - n m л

V n m у V n + m n -  m у
find:

a) A + 2 B ; b) 2AT - B ; c) A • B - B • A ; d) {A - B )2; e) tr {AT • B); 

f) tr {BT • A); g) tr {A • BT); h) tr {A + B); i) tr A + tr B .

2. Transform the matrix to echelon form:
f 1 1 1 1 '
m m n n

V n n m m j



CHAPTER 2. DETERMINANTS AND THEIR PROPERTIES

2.1. INDUCTIVE DEFINITION

Let A be an n /  n square matrix. The determinant of a square matrix A is the 

value, denoted by detri, that is defined from A according to the following rules:

1. The determinant of the first order matrix (n = 1) A = (axx)  is its only

element: det(tfn ) = an .

2. The determinant of a matrix A
fa,, ••• a, ^11 1 n

v a , ••• a ,\  n1 пп J

of order n > 1 is a value

del A = (-1 ) ‘+1 anM n + (-1 ) ‘+2 auM n + ... + ( - l ) 1+" . (2.1)
where M XJ is the determinant of the {n - 1) x (n - 1) matrix formed by deleting the

first row and the j  -th column of A .

The determinant is denoted by surrounding the matrix’s elements with vertical
bars:

detri = | A

By this definition, we can talk about order o f a determinant, row or column o f  

a determinant, omitting “of a matrix”. Thus, the first row of a determinant of order n 

is the first row au ,au ,...,alnof a square matrix of order n .

If the determinant of a square matrix is zero, the matrix is said to be singular, 

if the determinant of a matrix is nonzero, the matrix is nonsingular.

aи

an\

a1 n

a

Calculation of the second-order determinant

By the definition, the second-order determinant is computed by the following 

formula:

an an 

an an
®n®22 ®\2®2\ ' (2 .2)



The second-order determinant is the product of the elements on the main 

diagonal minus the product of the elements on the secondary diagonal (Fig. 2.1.).

+
Figure 2.1

Calculation of the third-order determinant

By definition and formula (2.2), the third-order determinant can be evaluated 

by the following formula:

a,n
a21

a31

an an
a22 d 23 
®32 азз

®22 a23 a21 a23
+ al3 • a2\ a22— an •

a32 азз
a\2 '

a31 азз аз\ a32

(2.3)
an a22 a33 + al2 a23 a3l + aV3 a2l a32 -  aV3 a22 a3] -  al2 a2l a33 -  an a23 a32.

Determinant (2.3) is a sum of six components, each of them is a product of 

three elements from the different rows and columns of the matrix. Three of the 

components have the positive sign and another three have the negative sign.

To remember formula (2.3), the triangle’s rule can be used: add three 

products o f the elements o f the main diagonal and the elements in the vertexes o f two 

triangles, having a side parallel to the main diagonal, (Fig. 2.2, a), and subtract 

three products o f the elements o f the secondary diagonal and in the vertexes o f two 

triangles, having a side parallel to the secondary diagonal (Fig. 2.2, b).

%
a ^y a ^  
a f f a ^  

a

Figure 2.2

Sarrus' rule can also be used, then the determinant can be computed by the 

following scheme (Fig. 2.3): write out the first two columns o f the matrix to the right 

o f the third column, so that you have five columns in a row, then add the products o f 
36



the diagonals parallel to the main diagonal (going from top to bottom) and subtract 

the products o f the diagonals parallel to the secondary diagonal (going from bottom 

to top).

Figure 2.3
Example 2.1. Evaluate the determinants

1 2
3 4 ,

1 2 3
5 4 6
7 -8 -9

2 2 1

1 1 0

0 2 1

□  Using (2.2) and (2.3), calculate

1 2
3 4 = 1 • 4 - 2 • 3 = -2;

= 1 • 4 -(-9) + 2 • 6 • 7 + 3 • 5 -(-8)- 3 • 4 • 7 - 2 • 5 -(-9)-1 • 6 -(-8 ) = 
= -36 + 84-120-84 + 90 + 48 = -18

According to Sarrus’ rule,

2 2 1 / \ y d
1 1 0 = we0 2 1 \/>Cx0

= 2 • 1 •! + 2 • 0 • 0 +1 • 1 • 2 - 0 • 1 • 1 - 2 • 0 • 2 -1 • 1 • 2 = 2. ■



2.2. COFACTOR EXPANSION FOR THE DETERMINANT

Let A be a square matrix of order n {n> 1). The (i,j)-th  minor of A, denoted 

Mtj, is the determinant of the (w -l)x (w -l) matrix formed by deleting the / -th 

column and the j  -th row of A .

The (i,j)-th cofactor Atj of A is the minor M tJ, multiplied by (-1) +/:

= 1  ' ) '  U •

The determinant of A can be calculated as a sum of cofactors either along any 

row or column of the matrix multiplied by the elements that generated them:

detri = Х Н Г  aikM ik = I ]агкАк O' "th row expansion);
k=1 k= 1

n n
detri = 1 Н Г  akjM kJ Akj ( j  -th column expansion).

k=\ k=\

The determinant of a triangular matrix (upper triangular, lower triangular or a 

diagonal matrix) equals to the product of the elements of the main diagonal.

an al2 •• am an 0 . . 0

Ли =
0 a22 •• a2n =

<N ...

Q22 . 0

0 0 .•• ann anl an2 • • ann

The determinant of any identity matrix equals to 1. 

Example 2.2. Evaluate the determinant of

r 2 1 0 ол
0 1 3 2

0 0 0 5

v- 1 2 0 0 ,
□  Let’s expand across the third row:

2 1 0 2 1 0

det^ = 0 - 4 1 + 0 - 4 2 + 0 - 4 3 + 5 - 4 4 = 5 - ( - l ) 3+4 0 1 3 = -5 • 0 1 3
- 1 2 0 - 1 2 0



Next expand along the last column of the remaining third order determinant 

2  1 0

= -5 • ( 0 • Al3 + 3 • А% + 0 • N33 ) = -5 • 3 • (-1)det A = -  5 ■ 0 1 3
- 1 2  0

\2+3 2  1

-1 2

The second order determinant is calculated according to the equation (2.2):

2  1
det A = 15 •

-1 2
15 -(2 • 2 - ( - ! ) •  l) = 15 • 5 = 75 .

2.3. PROPERTIES OF DETERMINANTS

2.3.1. Main Properties of Determinants

1. The determinant of the transpose of any square matrix is the same as the 

determinant of the original matrix: det A = d e t ( / f ) . As a result, rows and columns of

the determinant are “equal”: any property that is true for the rows of a matrix would 

be true for the columns as well.

2. If a row of a matrix is zero (all the elements of the row are zero), then the 

determinant is zero: det(...o ...) = 0 .

3. Interchanging any two columns of the matrix changes the sign of the 

determinant to the opposite one (asymmetric property):

det(... dj ...ak ...) = -det(... ak ... a} ...).

4. If two rows of a matrix are equal, then the determinant is zero:

det(... a} ...ak ...) = 0  if a} = ak.

5. If two rows of a matrix are proportional, then the determinant is zero:

det(... d j ... ak ...) = 0  if a} = Xak.

6 . Multiplying a column by the constant multiplies the determinant by that 

constant:

d e t^  ... X ■ dj ...an) = X- det (ax ...aj ... an) .



7. If the / -th column is written as the sum of the two columns a, + bt, then the 

determinant is the sum of two corresponding determinants, where7 -th columns are а} 

and bj, respectively, and the other columns are the same:

det(... cij +bj ...) = det(... ar ..) + det(...b j ...).

8 . The determinant is a linear function of each column:

det(...a • Qj+ p • bj...) = a  • det(...tfr ..) + p • det(...Zr...).

9. If a scalar multiple of a column is added to another column, the value of the 

determinant is unchanged:

det(...tf7 + X-ak ...ak ...) = det(... ...ak ...).

10. The sum of the products formed by multiplying each element of any 

column by the cofactors of corresponding elements of another column is zero:
n

1 Х  'Л  = 0  for ■
k= 1

From the formulas for row (column) expansion and Property 10, we have

i X ' 4 %k=1

0 , i * j ,  
det A, i = j

n

k= 1

0, i * j ,
det ̂ 4, / = j .

(2.4)

Let A be a square matrix. The adjoint matrix of A , denoted by A+, is the 

square matrix of the same order where each element is the (y,/) -th cofactor of the

matrix A: a* = Ap .

The adjoint matrix can be computed by the following procedure:

1) replace each element of the original matrix A = (atJ) with corresponding

cofactor Atj = ( - Г  M y , thus obtaining the matrix {AiJ) ;

2) find the adjoint matrix A+, transposing the (A ) matrix.

From equation (2.4) it follows that AA+ = A+ ■ A = det A- E , where E is the 

identity matrix of the same order as A .



Example 2.3. Given that A
( 1 2 л 
v3 4j

, compare the determinant of A to the

determinants of the following matrices: 

( 1 2 ̂  (1 + 3X 2 + 4X^

A T B = ( 2 1л 
v4 3J

C =
(3 4Л 
v1 2J

D  =
v 3X 4X j F  =

v
where X is a certain scalar.

j3 4
□  The determinant of matrix A was found in example 2.1: detA = -2. Let’s
evaluate the other determinants, using formula (2.2):

1 3det (AT) =

according to Property 1;

det B

2 4

2 1 
4 3

= 1 • 4 - 3 • 2 = -2 = det A.

2 • 3 -1 • 4 = 2 = -det A ,

according to Property 3, since matrix B is obtained from matrix A by switching the 
first and the second columns;

det C =
3 4 
1 2 = 3 • 2 - 4 • 1 = 2 = - det A

according to Property 3, since matrix С is obtained from matrix A by switching the 
first and the second rows;

1 2det D  = 3X 4X = 1 • 4X- 2 • 3X = -2X = X det A.

according to Property 6, since matrix D is obtained from matrix A by multiplying 
the second row by the constant X;

det F = 1 + 3X 2 + 4X 
3 4 (1 + 3X)- 4-(2 + 4X) • 3 = -2 = det A,

according to Property 9, since matrix F is obtained from matrix A by multiplying the 
second row by X and adding the product to the first row. ■



a 2 3 "
" 1  2^

, B = 5 4 6
3 4 JV /

v7 - 8 -9 .

Example 2.4. Given that A =

corresponding adjoint matrices A+, B+.

□  Let’s calculate all the cofactors of matrix A :

A n  = ( - l ) ‘+1 *4 = 4, 4 2 = ( - l )1+2-3 = -3 ,

А11 = ( - \ ) ы -2 = -2 , ^  = (-1)2+2-1 = 1.

Now we can find the adjoint matrix by transposing matrix (Д ):

find the

л + = (А У  =

Let's calculate the cofactors of matrix В :

'  4 -3 ' I '  \  _2 4

. - 2  К v-3 1 ,

в 21 = ( -  Г 1

^ 3 1 = ( - 1 ) 3+1

4 6

- 8  -9

2 3
- 8  -9

2  3 
4 6

= 12, Bl2 = ( - l ) 1+2

6 , 5 22 ( - l ) 2+2

5 6  

7 -9

1 3
7 -9

= 87,S13=(-1)1+3
5 4 
7 - 8

- 68.

30, B23

0 > B 32 (-1 r 1 3 
5 6

= 9 ,£ 3 3 = (-1 ) 3+3

H )

1 2  

5 4

2+3 1 2

7 - 8
=  22 .

=  - 6 .

Then the adjoint matrix is found by transposing matrix ( BA:

B+=(BAT =
" 1 2 87 - 6 8 "T '  1 2 - 6 0  "

- 6 -30 2 2 = 87 -30 9

1° 9 ~ 6 У
^ - 6 8 2 2

2.3.2. Determinant of Matrix Product

Let A and В be square matrices of the same order. Then

det(^4 • B) = det A • det В ,

i.e. the determinant of a matrix product of square matrices equals to the product of 

their determinants.



Example 2.5. Calculate the determinant of the product of matrices:

( \  2 \ _ ( 1  Зл
A =

3 4
В

4 5

□  Let’s evaluate the second order determinants of the matrices (see example 2.1): 

det A = - 2 , det В = - 7 . Using the property of the determinant of a matrix product, we 

get det(U • B) = det A • det В = (-2) • (-7) = 14.

Now, calculate the determinant by computing the matrix product:

A-B =

Hence, det(H-5) = 

one obtained before. ■

'1 2 ' A  3" '9  13'
,3 4, v4 5y 419 29,

9 13
19 29

= 9- 29 — 13-19 = 14. The result is equal to the

2.3.3. Elementary Transformations

Definition-based evaluation of determinants is not generally applied to the 

large matrices (n>  3), since the number of required operations, as well that the 

difficulty of the calculation, grows very quickly.

It is a much more efficient approach to use the properties of the determinant. 

The most important ones for evaluating determinants are Properties 3, 6 , 9. These 

properties are called elementary transformations (elementary row operations).

• Switching two rows (columns) o f the determinant reverses its sign.

• Multiplying each element in a row {column) by a non-zero constant multiplies 

the determinant by this constant.

• Adding to each element o f a row {column) a scalar multiple o f a corresponding 

element o f another row {column) o f the determinant doesn’t change the value o f 

the determinant.

Elementary transformations can be used to simplify the determinant, or to 

modify it so that it can be computed more easily.



The method consists of two steps:

1 ) using elementary transformations reduce the determinant of a matrix 

to the triangular form;

2 ) calculate the determinant of a triangular matrix as a product of the diagonal 

elements.

Example 2.6. Calculate the determinant

dQtA =

1 0 3 4
0 3 0 1

3 0 1 2

4 1 2 3

by transforming it to a triangular form.

□  1. Let’s use the elementary transformations to reduce the matrix to the triangular 

form. Choosing element an =1 from the first row as a leading coefficient (a pivot), 

make all the other elements of the first column equal to zero. Add the first row times 

(-3 ) to the third row and add the first row times ( -  4) to the fourth row:

1 0 3 4 1 0 3 4
0 3 0 1 0 3 0 1

3 0 1 2 0 0 - 8 - 1 0

4 1 2 3 0 1 - 1 0 -13

The value of the determinant doesn’t change since we use the Ill-type 

elementary transformations.

Switch the second and the fourth rows of the determinant:

1 0 3 4 1 0 3 4
0 3 0 1 0 1 - 1 0 -13
0 0 - 8 - 1 0 0 0 - 8 - 1 0

0 1 - 1 0 -13 0 3 0 1

We reverse the sign of the determinant because we used the I-type elementary 

transformation.



Now choose entry a22 =1 as a leading coefficient and make element 

a42 = 3  equal to zero by adding the second row times (-3 ) to the fourth one:

1 0 3 4 1 0 3 4
0 1 - 1 0 -13 0 1 - 1 0 -13
0 0 - 8 - 1 0 0 0 - 8 - 1 0

0 3 0 1 0 0 30 40

Let’s divide the third row by ( - 8 ), and the fourth row by 10, at the same time 

multiplying the determinant by -80 = ( - 8 ) • 1 0  in order to keep the equation balanced 

(П-type transformation):

1 0 3 4 1 0 3 4 1 0 3 4
0 1 - 1 0 -13 о001II 0 1 - 1 0 -13 оooII 0 1 - 1 0 -13

1,250 0 - 8 - 1 0 0 0 1 1,25 0 0 1

0 0 30 40 0 0 3 4 0 0 3 4

Let’s choose a33 =1 as a leading coefficient and make a43 =3 equal to zero. 

Add the third row times (-3  ) to the fourth row:

1 0 3 4 1 0 3 4
0 1 - 1 0 -13 о00II 0 1 - 1 0 -13
0 0 1 1,25 0 0 1 1,25
0 0 3 4 0 0 0 0,25

Now we have an upper triangular matrix.

2. Evaluate the determinant of the upper triangular matrix by multiplying the 

elements of the main diagonal:

det A = 80-

1 0 3 4
0 1 - 1 0 -13
0 0 1 1,25
0 0 0 0,25

= 80-M  l-0 ,25 = 20. ■



The method consists of two steps:

1) use the Ill-type elementary transformations to make all the elements of 

a row (column), except for one, equal to zero;

2 ) expand the determinant along this row (column), obtaining a determinant of 

decreased order. If the order of the new determinant n> 1, go to step 1, else finish the 

calculations.

Example 2.7. Evaluate the determinant

det/4 =

1 0 3 4
0 3 0 1

3 0 1 2

4 1 2 3

by reducing its order.

□  1. Let’s choose a24 = 1 as a leading coefficient, and make all the other elements of 

the second row equal to zero, using elementary transformations. Multiply the fourth 

column by (-3 ) and add it to the second one:

1 0 3 4 1 - 1 2 3 4
0 3 0 1 0 0 0 1

3 0 1 2 3 - 6 1 2

4 1 2 3 4 - 8 2 3

2. Expand the determinant along the second row:

1 -12 3 4 
0 0 0 1
3 -  6 1 2
4 -  8 2 3

We now have a third order determinant.

Now let's multiply the second column by 0,5, then we also have to multiply the 

determinant by 2 ):

1 - 1 2 3

= 4 - 1 ) “ 3 - 6 1

4 - 8 2



1 - 1 2 3 1 - 6 3

3 - 6 1 =  2  • 3 - 3 1

4 - 8 2 4 - 4 2

A d d  t h e  f i r s t  c o l u m n  t o  t h e  s e c o n d  o n e :

1 - 6 3 1 - 5 3

2  • 3 - 3 1 =  2  • 3 0 1

4 - 4 2 4 0 2

E x p a n d  t h i s  d e t e r m i n a n t  a l o n g  t h e  s e c o n d  c o l u m n :

1 - 5 3

3 0 1

4 0 2

2  - ( - 5 ) . ( - 1 ) 1+2
3  1

4  2

1

2

W e  g e t  t h e  s e c o n d  o r d e r  d e t e r m i n a n t .

L e t ’ s  a d d  t h e  f i r s t  r o w  t i m e s  ( - 2 )  t o  t h e  s e c o n d  r o w :

1 0  •
3  1

4  2

1

0

E x p a n d  t h e  d e t e r m i n a n t  a l o n g  t h e  s e c o n d  r o w ,  g e t t i n g  t h e  f i r s t  o r d e r  

d e t e r m i n a n t ,  w h i c h  v a l u e  e q u a l s  t o  i t s  o n l y  e l e m e n t :

1 0  •
3

- 2

1

0
10 - ( - 2  ) - ( - 1 ) 2+1 - 1  =  2 0 .

T h e  r e s u l t  i s  e q u a l  t o  t h e  o n e  o b t a i n e d  i n  e x a m p l e  2 . 6 .  ■

EXERCISES

E v a l u a t e  t h e  d e t e r m i n a n t s :

a )
m  +  n  

m  -  n

m  -  n  

m  +  n

m m n

b ) m m m  +  n

n m  +  n 2 n



CHAPTER 3. MATRIX RANK

3.1. LINEAR DEPENDENCE AND LINEAR INDEPENDENCE 

OF MATRIX ROWS (COLUMNS)

In the following, we will call matrix-columns (matrix rows) simply columns 

(rows) and denote them by lowercase letters. Columns are equal if they have the 

same sizes and all the corresponding elements are equal.

Column A is called a linear combination of columns A1, A2 ,. .., Ak of the same 

sizes, if

A = a 1 ■A1 + a 2 ■ A2 + ... + a k • Ak, (3.1)

where a 1 , a 2 , . . . ,a k are arbitrary numbers. In that case we say that column A is 

decomposed into columns A1 , A2 ,..., Ak , and numbers a 1 , a 2 , . . . ,a k are called the 

decomposition coefficients.

A linear combination A = 0 ■ A1 + 0 ■ A2 +... + 0 ■ Ak, where all the coefficients

are equal to zero, is called trivial.

If the columns in (3.1) are given by

f  a1) f a Л 11 f a Л1k
A = • , A  = • II •

V an у V an1 у V ank у

then the matrix equality (3 .1 ) can be expressed in a form of element-to-element 

equalities

at = a 1 ■ aa + a 2 ■a12 +... + a k • alk, i = 1,...,n .

A linear combination of rows of the same sizes is defined in a similar way.

A set of columns A1 , A2 , . ,  Ak of the same sizes is called a system o f columns. 

Any part of a system of columns system is called a subsystem.



A system of к columns Ax,A2,...,Ak is called linearly dependent, if there 

exist such numbers a „ a 2 ,...,at , not all equal to zero, that

oq • Ax + oc2 ■ A2 +... + oĉ  • Ак — о . (3.2)

Hereinafter symbol о will denote a zero column of a corresponding sizes.

A system of к columns Ax,A2,...,Ak is called linearly independent, if 

equation (3.2) is correct only if oq = a 2 = ... = a k =0 , i.e. when the linear 

combination on the left side of equation (3.2) is trivial.

One column Al composes a system as well: for Ax = о the system is linearly 

dependent, and for Ax ф о -  linearly independent.

For rows (row matrices) we get similar definitions.

Example 3.1. By definition, determine linear dependence or linear 

independence of systems of columns:

r q (2 \ r q f ° la) Ax =
, 0 ,

, —

a
; b) Ax =

, 0 ,
, A2 —

, 2 ,

□  a) Columns Ax = f 1] and A  =
' 2 '

A
L

A
are linearly dependent, because we can

compose a non-trivial linear combination, e.g., with coefficients oq= 2 , a 2 = - l  

which is equal to a zero column:

r q '2 s f ° l2 -
A

- 1 -

A
—

A

b) columns Ax =
r q

and A  =
A

, 0 ,
L

A

equality oq 

when oq = a 2 = 0 .

r q
+ ot9 •f ° l

, 0 ,
L

, 2 , , 0 ,

are linearly independent, because the

1 ■ oq = 0
that matches the system <{ , is correct only

2  -oc2 = 0



The concepts of linear dependence and linear independence are defined for 

rows and columns in a similar manner. Hence, the properties of linear dependence 

and independence, given for columns, will be true for rows as well.

1. If there is a zero column in a system of columns, this system is linearly 

dependent.

2. If there are two equal columns in a system of columns, this system is linearly 

dependent.

3. If there are two proportional columns (Д = XA; ) in a system of columns, this 

system is linearly dependent.

4. A system of k> \  columns is linearly dependent when and only when at 

least one of the columns is a linear combination of the others.

5. Any columns that are included in a linearly independent system, compose a 

linearly independent subsystem.

6 . A system of columns that contains a linearly dependent subsystem, is 

linearly dependent.

7. If a system of columns Al,A2,...,Ak is linearly independent, but after the 

addition of column A becomes linearly dependent, then column A can be uniquely 

decomposed into columns Д 5 Д2 , . . . ,  Ak , i.e. decomposition coefficients are single­

valued.

8 . Two nonzero columns A1,A2 compose a linearly dependent system, if they 

are proportional (А1 = Ы 2), and a linearly independent system, if they are not 

proportional.



3.2. BASIS MINOR AND MATRIX RANK

Basis minor of a matrix. Computing the rank of a matrix

Let A bea /wx« matrix, and k -  a natural number not greater than m and n : 

к < min { m;n }. A minor o f order к  of matrix A is the determinant of a matrix

of the к-th order, composed of the elements at the intersection of к arbitrarily 

chosen rows and к arbitrarily chosen columns of A .

Denoting minors, we will write the numbers of the chosen rows as superscripts 

and the numbers of the chosen columns as subscripts, in ascending order.

Example 3.3. Write down minors of different orders of the following matrices:

' \  2 3"
r\ 2 1 (Г

A =
v4 5 6 2

; b )B  = 0  2 2 3

4 3 3,

□  a) Matrix A of sizes 2x3 has six minors of the first order, for example, 

= det(a12) = 2 , and three minors of the second order, for example,

M\l =
2 3 
5 6

=  - 3 .

b) Matrix В of sizes 3x4 has 12 minors of the first order, e.g.

2  1
M 2 = det(6 32) = 4, and 18 minors of the second order, e.g. M,12

23 2 2
2 , and

four minors of the third order, e.g. М\Ц
1 1 0

0 2 3
1 3 3

=  0 . ■

Let A be a m xn  matrix. A minor of A of order r is called basis, if it is 

nonzero and all minors of order (r + 1) are equal to zero or do not exist.

The rank o f a matrix is the order of its basis minor. The rank of a matrix A is 

denoted by rg A. It can also be denoted by Rg A , rang A , rank A .

A zero matrix doesn’t have a basis minor. Thus, the rank of a zero matrix is, by 

definition, equal to zero.



If all minors of order A: of a matrix are equal to zero, all minors of higher 

order are also equal to zero.

The rank o f a matrix equals to the largest order o f any nonzero minor o f this 

matrix.

If a square matrix is nonsingular, its rank is equal to its order. If a square 

matrix is singular, its rank is less than its order.

The rank o f a block matrix is computed as the rank o f an ordinary {numerical) 

matrix, i.e. without paying attention to the block structure. In addition, the rank of 

a block matrix is not less than the ranks of its blocks:

rg (^  | B) >rg A and rg И IV CTQ to

Example 3.4. Find all basis minors and ranks of the following matrices:

" 0 0 " f  1 2 "
a) 0  =

o,
b) A = ( 0 0 О; c) B =

o,
Э

f l 3'
A 2 " f l 2 3̂

2 \

d) C = Л (L 5 e) D = 0 0 f) F  = 2 4 5 ;
4 0^/

J 3, kl 2 V

' 1 2 3̂ ( l 2 2 0 "

g )G  = 0 4 5 h) H = 0 2 2 3
чо 0 6 , 0 0

□  a) Matrix О is zero, so all of its minors are equal to zero. A zero matrix doesn’t 

have any basis minors, and it’s rank equals to zero by the definition: rgO = 0.

b) One of the first-order minors of matrix A = {0 0 l) is nonzero: M\ =1, 

and minors of the second order don’t exist (since there’s only one row). Hence, the 

minor M\ is basis and the rank of this matrix is equal to 1.

A  I f
c) For matrix В

0  0
there are nonzero minors of the first order: M\ = 1

and M l = 2. These minors are basis, because the only minor of the second



order МЦ =
1 2  

О О
is equal to zero. Hence, rgB = 1.

d) All first-order minors minors of the first order of matrix C
' 1  2  3̂  
v2 4 6 /

which are equal to its elements, are nonzero, and all the minors of the second order 

are equal to zero, because rows of the matrix are proportional. Thus, the matrix has 

six basis minors and its rank is equal to 1 .

e) Matrix D has a nonzero minor of the second order
1 2

1 3
= 1 , and

minors of the third order don’t exist (since there’re only two columns). Hence, Mf2 -  

is the only basis minor and rg D = 2 .

f) Matrix F has six nonzero minors of the second order: МЦ , МЦ, МЦ , 

М Ц  М Ц  М 2 3 , and the only third-order minor, i.e. the determinant, is equal to zero, 

since matrix has two equal rows (the first and the third ones). Hence, each of the 

mentioned minors of the second order is basis and the rank of the matrix is equal to 2 .

g) The determinant of matrix G (i.e. the minor of the third order) is nonzero: 

detG = МЦ] = 1 • 4 • 6  Ф 0 . Hence, the minor M™ is basis and rgG = 3.

h) All third-order minors of this matrix are equal to zero, because the third row 

of these minors is zero. So, only a minor of the second order, situated in the first two 

rows of the matrix, can be basis. Searching through the six possible minors, we 

choose the nonzero ones:

m \22 =m 12 _  
13 —

1 2  

0  2  ’
M,12

24

2 0  

2 3
and M\l

1 0

0 3

Each of these five minors is basis. Hence, the rank of this matrix is equal to 2. ■



1. In an nonzero matrix A every row (column) is a linear combination of 

rows (columns), in which the basis minor is situated.

2. The determinant is equal to zero if and only if one of its rows (columns) is 

a linear combination of other rows (columns).

3. Applying elementary transformations to a matrix does not change its rank.

4. If a row (column) of a matrix is a linear combination of other rows 

(columns) of this matrix, this row (column) can be deleted from the matrix without 

changing its rank.

5. If a matrix is reduced to the simplest form (1.3), then xg A = xg A = r .

6 . The rank of a matrix is equal to the maximum number of linearly 

independent rows of this matrix.

7. The maximum number of linearly independent rows of a matrix is equal to 

the maximum number of linearly independent columns:

rg A = rg AT.

8 . Elementary row transformations preserve linear dependence (or linear 

independence) of any system of columns of this matrix.

9. The rank of a matrix product is not larger than the ranks of factors:

rg(AB) < min{ rg A, rg В } .

10. If A is a nonsingular square matrix, then xg(AB) = xgB and 

rg (CA) = rg C , i.e. the rank of a matrix does not change after multiplying it from the 

left or from the right by nonsingular square matrix.

11. The rank of a sum of matrices is not larger than the sum of the ranks of 

summands:

rg (A + B) < rg A + rg В .



3.3. METHODS FOR MATRIX RANK COMPUTATION

3.3.1. Method of Bounding Minors

Let A be an mxn  matrix. We will say that minor M hh'"Vk+l of order (k + \)J hh—hh+\ V >

bounds (contains) minor of order к .

Describing the method, we will write down indices of the chosen rows and 

columns, in which the minor is situated, without putting them in ascending order. In 

so doing, the minor at issue and the minor with indices put in order have equal 

absolute value and, maybe, are of different signs, but it is of no importance for the 

method of bounding minors, because we only want to find out the answer to the 

question: is the minor equal to zero or not.

1. Choose row i and column /,, so that the minor of the first order M) = a,,1 u 1 J J\ hJ\

is nonzero. If it is possible, then rg A > 1, else the process terminates and rg A = 0.

2. Bound the minor M lj Ф 0 by adding another row i2 Ф ix and another column 

j 2 Ф j\ to the chosen ix -th row and the j\ -th column, so that the minor

M ti,=
a,n % ,

ahh ahh
ф 0. If it is possible, then rg A > 2, else the process should

terminates and rg A = 1.

3. Bound the minor M l̂ h ^ 0 by adding to the previously chosen rows and 

columns another row i3 and another column j 3 in order to get the minor ф 0 .

If it is possible, rg A > 3, else the process terminates and rg A = 2 .

Continue the bounding process until it is terminated. Suppose we have found 

a nonzero minor of order r : \  ^ 0 ,  i.e. rg A>r .  But all the minors of order

(r + l), bounding it, are equal to zero = ^ or d° n°t exist (for r = in or

r = n ). Then the process terminates and rg A = r .



Example 3.5. Find ranks of matrices, using the method of bounding minors:

^ 0  (Г 

. 0  0 /

3̂ 9 ' ^ 0 2 3N
A = , B =

v2 4, v2 4 6 ,

□  Matrix О :

C =
1 0 2 1 3
2 0 1 1 2

3 0 3 2 5

1. This matrix does not have any nonzero minors of the first order, because all 

of its elements are equal to zero. Hence, rg О = 0.

Matrix A :

1. Choose the first row ( /, = 1) and the first column ( у, = 1) of matrix A , at the 

intersection of which there is a nonzero element an = 3 * 0 .  We have minor 

M l = 3*0 .  Hence, rg A > 1.

2. Add another row i2 = 2 and another column j 2 = 2 to the previously chosen

ones. We have a nonzero minor of the second order: M \ 22 =fetA =
3 9 
2 4

= - 6 * 0 .

Hence, rg A > 2.

3. Since we have used all the rows and columns of matrix A,  there are no 

minors bounding МЦ  * 0. Hence, rg A = 2 .

Matrix В :

1. Choose the first row and the second column of matrix at the intersection of 

which there is a nonzero element bl2 = 2 * 0 .  We have a minor M \ = 2 * 0 .  Hence, 

rg В > 1.

2. Add the second row and the third column to the previously chosen ones. We

have a minor of the second order: МЦ
2 3 
4 6

= 0 . The choice was unsuccessful,

because we have got a zero minor. Let’s take the first column instead of the third one.

Then we have a nonzero minor of the second order: МЦ
2 0 
4 2

= 4 * 0 .  Hence,

rgB>2.



3. We have used all the rows of matrix В . There are no minors of the third 

order, thus rg В = 2 .

Matrix C :

1. Choose the first row ( /, = 1) and the first column ( j\ = 1) of matrix C, at the 

intersection of which there is a nonzero element an = 1*0.  We have minor

M\ = 1*0.  Hence, rg С > 1.

2. Add another row i2 = 2 and another column j 2 = 2 to the previously chosen

ones. We have a minor of the second order: МЦ
1 0  

2 0
. Choosing the second

column was unsuccessful, because we have got a zero minor. Let’s choose the third

1 2
column ( j 2 = 3) instead. Then we have a nonzero minor M \l =

2  1
= - 3 * 0 .

Hence, rg C > 2.

3. Bound minor МЦ * 0. There are three bounding minors:

1 2 1 1 2 3 1 2 0

M 123 =1V113 4 2 1 1 = 0 , M 123 =J W 135 2 1 2 = 0 , M 123 =1V113 2 2 1 0

3 3 2 3 3 5 3 3 0

All three determinants are equal to zero, since the third row is a sum of the first 

two. Thus, it’s impossible to find a nonzero minor of the third order, i.e. the rank of 

matrix C is equal to 2. ■

3.3.2. Elementary Transformations Method

Let A be an m xn  matrix. To calculate its rank we need to make the following

steps.

1. Reduce the matrix to echelon form (see the method in section 1.2.6).

2. Calculate the number r of nonzero rows of the obtained matrix. This 

number is equal to the rank of matrix A .



This method is based on Property 8  (see section 3.2). The basis minor of a 

matrix in echelon form (1 .1 ) is a minor

M  =

1 * 
0  1

*
*

0 0  ••• 1

composed of columns containing unity elements (at the beginning of each “step”). 

This determinant of triangular form is nonzero (equals to 1), and each of its bounding 

minors (if it exists) is equal to zero, because it contains a zero row.

Example 3.6. Find ranks of matrices, using elementary transformations method

□  Matrix O :

O =
' 0  0 ' '  3 9 ' '  0  2  3'

, A = , B =
, 0 v 2 4, v2  4  6,

С =
'  1 0  2  1 

2  0  1 1

v 3 0 3 2

'  1 2 3 >
0 0 0

2 1 3
1 1 2

v 3 2 5  J

1. A zero matrix is already in echelon form (see definition in section 1.2.6).

2. A number of nonzero rows is equal to zero. Hence, rg O = 0.

Matrix A :
1. Reduce matrix A to echelon form (see example 1.18):

([ 1 31

0 h  J

2. There are two nonzero rows in this matrix. Hence, rg A = 2 .

Matrix B :

1. Reduce matrix B to echelon form (see example 1.18):



B ~ f L 2 3 ^

l 0 1 1.5

2. There are two nonzero rows in this matrix. Hence, rg B = 2.

Matrix C :

1. Reduce matrix C to echelon form. Choose au = 1 as a pivot and make all 

the other elements of the first column equal to zero: add the first row, multiplied by 

(-2 ), to the second row, and the first row, multiplied by (-3 ), to the third one. We 

get matrix

f 1 0 2 1 3" f 1 0 2 1 3 ^
С = 2 0 1 1 2 ~ 0 0 -3 -1 -4

i 3 0 3 2 5  y i 0 0 -3 - 1 - 4,

that has two equal rows. By Property 4 (see section 3.2), we delete one of the equal

rows:
1 0  2 1 3 '
0 0 -3 -1 -4

. We got an echelon form of the matrix.

2. There are two nonzero rows in this matrix. Hence, rg С = 2.

Matrix D :

1. Reduce matrix D to echelon form. We delete the zero row and choose 

a11 = 1 as a pivot element to make all other elements of the first column equal to zero:

D

f 1 2 3" f 1 2 3 ^
2 1 3 0 -3 -3
1 1 2 0 - 1  - 1

13 2 5  y 10

ii

The last three rows of the matrix are proportional. By Property 4 (see section 3.2) we

can delete two of them:
1 2  3

0  - 1  -ly
. We have got an echelon form of the matrix.

2. There are two nonzero rows in this matrix. Hence, rg D = 2. 

Note, that rg C = rg D , because D = CT by Property 7 (see section 3.2). ■



1. Calculate ranks of the matrices:

a)
f 1 

2

m n m
1 1 n

m + 1 n + 1 m + n

f  1 2 1 2  2
m n m n

-m n -m n

v 1 2 1 2  J

using the method of bounding minors and elementary transformations method.

2. Calculate ranks of the matrices:

a) A
f0 0 ^

v0

; b) A
f 1

v 2

- 1  2  

- 2J
; c) A

f 1

v 0

0  2  

1
; d) A

f 0  1 ̂

v0  0,
; e) A

f 0 0 0  ̂
0 1 0

v1 0 0  J

f) A
f  1 1

1 2 f 1 2 3 4 N f 1 0 0 0 5 2
2  2 3 ; g) a  = 2 4 6 8 ; h) A = 0  0 0 0 0

v 3 3 4  j v 3 6 9 1 2  j v 2  0 0 0 11j

3. Calculate ranks of the matrices using the elementary transformations 

method:

a) A

f 25 43 ^
f 0 2 -4  ^

f 1 2 4 2
31 17

3
75 94 53 132

- 1 -4 5
1 2 5 6 ; b) a =

75 94 54 134
; c) A = 3 1 7

v 3 6 13 16 0 5 - 1 0/ v 25 32 2 0

00

v 2 3 0  j

f 1

d) A
2
11

0 4 - 1 2 f 24
1 1 1 2

; e) A =
49

4 56 5 73
- 1 5 - 6  j v 47

19 36 72 -38 2
40 73 147 -80
59 98 219 -118
36 71 141 -72 j

4. Calculate ranks of the matrices using the method of bounding minors:

a) A
f 1 2 3 4 ^
1 2 5 6 ;

v3 6  13 16,
b) A

f 1 0  2  0 2  

4 3 1 2  
6  3 5 2 .



CHAPTER 4. INVERSE MATRIX

4.1. DEFINITION, EXISTENCE AND UNIQUENESS OF INVERSE

MATRIX

Let’s consider a problem of definition of an operation, opposite to the 

multiplication of matrices.

Let A be a square matrix of order n . Matrix A~l, satisfying with the given 

matrix A to the equalities

A~1-A = A-A~1 =E,

is called the inverse of A . Matrix A is called invertible, if there exists an inverse 

matrix, otherwise it is called noninvertible. By definition A and AT1 are permutation 

matrices.

From the definition it follows that if an inverse matrix A Exists, it is a square 

matrix of the same order as A .

f  a u аU \n

A square matrix A = • • with nonzero determinant has an inverse

l a nl ®nn у

matrix, which is unique

(  A  A u A \ -  А Л

A - 1
1 A  2 ^22 . . .  4,2

= 1 -Л*. (4.1)
d e t A * • • d e t A

y A n A n ' ' ' A m  у

( A 
л п A i ••

where A+ = A  2 Аг •• 4,2 is a transpose o f a matrix composed o f cofactors

 ̂A n A n  • A' л nn /

of matrix A.

Matrix A+ is called the adjoint matrix of A (see section.2.3.1).



The operation of matrix inversion allows us to define an integer negative 

power of a matrix. For a nonsingular matrix A and any natural number n we have

AT”

4.2. PROPERTIES OF INVERSE MATRIX

The operation of matrix inversion has the following properties:

4. det A-1 = —-— , 
det A

5. E~l = E ,

if the operations in equalities 1 - 4  have sense.

A matrix that is inverse to a nonsingular diagonal matrix is also diagonal:

1. Evaluate the determinant det A of the given matrix. If det A = 0, the inverse 

matrix does not exist (matrix A is singular).

2. Calculate matrix (A ) of cofactors A = ( - Г  M tJ of matrix A .

3. Transposing matrix (Ay), obtain the adjoint matrix A+ = (A )T.

4. Compose the inverse matrix (4.1), by dividing all the elements of the adjoint 

matrix by the determinant det A :

4.3. METHODS OF MATRIX INVERSION

Let A be a square matrix. We need to find the inverse matrix A 1. 

Algorithm for finding the inverse of a matrix using the adjoint matrix

(first method)

A_1= — — A+. 
det A



Algorithm for finding the inverse of a matrix using elementary transformations

(second method)

1. Compose a block matrix ( A | E ), by adding an identity matrix of the same 
order to the right of A .

2. Using elementary row transformations of matrix (A  \ E ), reduce its left 
block to the simplest form Л (1.3). In doing so, the block matrix takes on form 
(Л | S ), where S is a square matrix, obtained from an identity matrix E by applying 
the elementary transformations.

3. If Л = E , then block S is the inverse matrix, i.e. S  = A-1. If Л ф E , then 
matrix A is noninvertible.

For a nonsingular matrix A this method of finding the inverse matrix is 
illustrated by the following scheme:

E | A'1(A iE )-
Elementary row transformations

For nonsingular square matrices of the second order A
a b 

c d
there is a

simple rule for finding an inverse matrix, which follows from the first method:
1) switch the elements on the main diagonal;
2) change the signs of elements on the secondary diagonal;
3) divide the obtained matrix by the determinant det A = ad  -  bc ф 0 :

A '1  = 1
ad - bc

d  - b  ̂
y - c  a j

Example 4.1. Given A
1 2 
1 4 , find the inverse matrix.

(4.2)

□  First method.

1. Find the determinant det A = 1 2 
1 4 = 2 ф 0. Since the determinant is

nonzero, matrix A is nonsingular and, therefore, has an inverse matrix.



2. Compose a matrix of cofactors: (Д ) =

3. Transposing the matrix (Д ) ,  we get the adjoint matrix

4 - n
- 2 1 /

we get

A+ = (AAT =
- 1  1

4. Dividing all the elements of the adjoint matrix by the determinant det A = 2 

find the inverse matrix:

^ - = i .
2

' A  - 2 ' ' 2 - f |

,-1 К
i 1

^ 2 2 У

Let’s check A lA =
2 -Г|

V 2 2

( 1  2 ^  ( l  ( Л

1 4 v 0  1 ,
= E.

Using the rule (4.2), for matrix A

1

A  2 ' 'а Ьл

,1 d A

A-i
det A

( d - b \  
- c  a

f  4 -2 W  2
- 1  1 у

we get

-П

V 2 2 J

1 1Note that det A~l = — = ------
2  det Л

Second method.

1. Compose a block matrix

A  2 1 O '

J  4 o h
( A \ E )

2. Applying elementary row transformations, reduce it to the simplest form 

| A-1). Add the first row, multiplied by (-1), to the second row:

A  2 1 O' A  2 1 o '

J  4 0 1, v° 2 -1  b
( A \ E )  =

Now add the second row, multiplied by (-1), to the first one:

Д 2 1 o' Д о 2 -1'
ч° 2 -1 v° 2 -1 К



' 1 0
V 0 2 -1 1

1 0 
0 1

2 - 1
- 1  1

2 2 J
E2

In the right block we have the inverse matrix A -1
_1 1V 2 2 J

Example 4.2. Given A
1 2 1 
0 1 0 
0 2 2

, find the inverse matrix.

□  First method.

1. Find the determinant det A = 2 .
2. Find the cofactors of matrix A  : 

1 0
A  = ( - Г

A  = ( - 1 f

2 2
2 1
2 2

2; A,2 = ( - ! /* 2

= -2 ; A22 =(-1) 2+2

A3, = ( - 1 f
2 1 
1 0 = - 1 ; A3 2 = ( - 1)

3+2

0 0 
0 2
1 1
0 2
1 1 
0 0

0 ; A13 = ( - 1 ) 1+3

= 2 ; a23 = ( - 1 ) 2+3

= 0 ; A33 = ( - 1)
3+3

0  1

0  2

1 2  

0  2

1 2  

0  1

0;

= -2;

= 1

and compose matrix (Aij)
2 0 0'
-2 2 -2
v-1 0 b

3. Transposing the matrix (Aij), get the adjoint matrix

A + = ( j  )  =

 ̂2 -2 -1>
0 2 0
V 0 -2 1 j

4. Dividing all the elements of the adjoint matrix by the determinant det A = 2 
we get the inverse matrix:

A-1 =■ 1
det A-A+ =

(1 -1
0 1
V 0 -1

1Л
2

2 j



Let’s check the equality A -1 A  = E :
f l -1 1 \2 f l 2 I f f l 0 о л

0 1 0 0 1 0 = 0 1 0

v° -1 1
2 2 2 2 , 0

К

Second method.

1. Compose a block matrix (А | E ) by writing to the right of A an identity 
matrix of the same order:

( A \ E )  =

2. Applying elementary row transformations, reduce it to the form {e  \ A :

f l 2 1 1 0 0 ^

0 1 0 0 1 0

v°  2 2 0 0
к

'1 2 1 1 0 0" "1 0 1 1 -2 0Л

0 1 0 0 1 0 ~ 0 1 0 0 1 0
к0 2 2 0 0 к

оо 2 0 -2 К

f l  0 1 1 -2 °f f 1 0 0 1 -1 - 1\2
~ 0 1 0 0 1 0 ~ 0 1 0 0 1 0оо

1 0 -1 12 ) о
У1* 

о 1 0 -1 1
2 J

In the right block we have the inverse matrix A 1 =
fl
0

-1 —3A 1 2
1 0 . u

1° - 1 t j

4.4. MATRIX EQUATIONS

Consider a matrix equation
A - X  = B , (4.3)

where A and В are given matrices with the same number of rows (and matrix A is 
a square matrix). It is required to find matrix A  that satisfies the equation (4.3).

If the determinant of matrix A is nonzero, then matrix equation (4.3) has 
a unique solution

X  = A~l - B .



Y  -A = B , (4.4)
where A and В are given matrices with the same number of columns (and matrix A 

is a square matrix). It is required to find matrix Y that satisfies the equation (4.4).
If the determinant of matrix^ is nonzero, then equation (4.4) has a unique 

solution
Y  = B - A ~ \

Example 4.3. Given the matrices

A =
f \ 2Л

vl Ъ
B  =

1 3 5
2 4 6 C =

f l 2^ 

3 4
v5 6/

solve equations: a ) A - X  = B ; h ) Y - A  = B\, o ) Y - A  = C .

r 2 -f\□  The inverse matrix A 1 = _ ±  i
V  2 2 J

was found in example 4.1.

a) The solution of equation A • X  = B  is obtained by the multiplication of both 
parts of the equation by AY1 from the left:

X  = A~l ■ В =
' 2 -f| ' 1 3 5) "0 2 4̂

i
V 2

1
2 7 v2 4 6, i

L 2
12 i

2 /

b) The equation has no solutions, because matrices A and В have different 
number of columns (2^3).

c) The solution of equation YA = C is obtained by the multiplication of both 
parts of the equation by A~y from the right:

Y = CA~y

f l 2"
'  2 -f| "1 0 ̂

3 4
i 1 = 4 -1

v 5 6, ^  2 2 J 7 -2



Example 4.4. Solve the equation A • X  • B = C , for

A:
(1 2У
V1 4y

□  Inverse matrices A 1 =

(1
B = 0

V 0

( 2 -4
1V 2 12 У

C

and B 1 =

1 3 5'
2 4 6

(1 -1 - 
0 1 0
v0 -1 i у

were found

Examples 4.1 and 4.2, respectively.
Find the solution of the matrix equation by the formula

X  = A-1 • C • B -1

(0 2 4У
1 1 1

( 2 -1у ( 1 3 5 У
V' 12 12 У V 2 4 6 У

(1 -1 -1У (02
0 1 0 = 1
V 0 -1 12 У V 2

(1 -1 -±У1 1 2
0 1 0
v0 -1 Ъ

4  0

EXERCISES

1. Find inverse matrices for the given ones:

a)  ̂m n^
v - m  n у

; b)
( m n - m л (m 1 2 у
- n 1 1 ; с) 0 n 3
, m -1 1 . , 0 0 m + n ,

2. Solve matrix equations:

a)

c)

 ̂m n2
V -m n

1 1
V - m n

• X  =

• X  •

(1 2 у
V 3 4 У

m n

- n m

-  2 • X ;

'  = ( 1 2 У
у V3 4 у

b) X
m n

-m n

d)

(1 2 у
v3 4y

- 2 • X;

(1 0 1У (1 1 1 у
0 1 m • X  = m m m

,1 -n 1 . V n n n ,

in



CHAPTER 5. SYSTEMS OF LINEAR ALGEBRAIC

EQUATIONS

5.1. BASIC CONCEPTS AND DEFINITIONS

System o f m linear algebraic equations with n unknowns is represented by 

the following formula

a n X \  +  c iy2x 2 +  • — i- ctlnxn —  

a2\Xy + a22x2 л-----h a2nxn = b2,

amixx + am2X2 + +  a  xmn n mh .

(5.1)

Numbers a / = , j  = \,...,n  are called coefficients o f the system;

by,b2,...,bm -  constant terms; xx,x2,...,xn -  unknowns. The number of equations m 

can be less, more or equal to the number of unknowns n .

System solution is an ordered set of n numbers ( а 1,а 2,.. . ,а и) such that, if we

substitute unknowns X y , x 2 , . . . , x n with corresponding numbers oq, а 2,...,а„ , then

each equation of the system will be correct.

System is called consistent, if it has at least one solution. If a system has no 

solutions, it is called inconsistent.

Consistent system is called determined, if it has a unique solution, otherwise, if 

there is more than one solution, then system is called under determined.

System (5.1) is called homogeneous, if all constant terms are equal to zero:

Q y y X y  + al2x2 + • • • + aXnxn = 0,
a 21Xy + a22x2 + • • • + a2nxn = 0,

(5.2)

, W + V 2  + " ' + V » = 0 '

Systems of general form (5.1) are called nonhomogeneous.

System (5.1) is usually written in matrix form. To do this, it is necessary to

write the coefficients of the system as a coefficient matrix A =
a.и

\ аш1

a1 n

amn J



constant terms are written as a constant term column b

V  Ь т  J

, and unknowns -  as

an unknown column x
V x ,V n j

Matrix form  of an nonhomogeneous system of equations (5.1) is given by

Ax = b , (5.3)

and of a homogeneous system of equations (5.2):

Ax = o , (5.4)

where symbol o on the right hand side denotes zero column of sizes m x 1 .

Matrix form (5.3) of a system of equations can be represented equivalently as 

the following:
f  „ \aii

V a m1 J

f  „ \

• xi +
a12

a 2V m  2 J

f  „ \

' x2 + ... +
ain

V a m n  J

fh  \

x„ =
b1

V  b m  J

Then the system solution is represented by a column x

V a  n J

and satisfies the

equation
лa11

V a 1 )\  m1 /

f  „ \

a 1 +
a12

V a 2 )V m  2 J

Ы  Л ( b ^
• a 2 +... +

1n

V a ,m n

• a  =
V b ,

m

(5.5)

i.e. a constant term column is a linear combination of columns of a coefficient matrix.

5.2. CRAMER’S RULE

Consider the following case: the number of equations m is equal to the number 

of unknowns n (m = n ), i.e. we have the following system

е д  + — + aXnxn = b ,

an 1 x1 + — + an nxn = bn ,n1 1 nn n n  ’

(5.6)



where coefficient matrix is a square matrix of the n -th order:

4 i ai2 4  n

A = a21 a22 a2n Its determinant will be denoted by

A 4,2 •" <*m у

Оц fl?12 а1 п

А = det А = 2̂1 2̂2 а2w

4,1 ««2 а_

Cramer’s rule. I f  the determinant A o f the coefficient matrix o f a system with 

n linear equations and n unknowns is nonzero, then the system has a unique 

solution, which is obtained by the following formulas

A, 1xi= - r ,  l = \,...,n ,
A

where A; is the determinant of a matrix, obtained by the substitution of the i -th

an 4  i- l a u+1 ••• 4*

column with the constant term column, i.e. A( = a 2\ a 2 i-\ b2 a 2 i+ \ a 2n

4,! ••• 4.M К a m +1 ••• a nn

I f  A = 0 and at least one Ai. ф 0 , then the given system is inconsistent.

7/’ А = А1=... = Аи=0, two cases are possible: the given system can be both 

inconsistent or underdetermined.

Example 5.1. Solve the system of linear equations

2xx + 2jc2 + x3= 9,
< Xj + x2 3,

2x2 -kr3 = 7.

r2 2 n
coefficient matrix A = 1 1 0

2 К

and calculate its determinant



А  =

2 2 1 
1 1 О
О 2 1

= 2 + 2 - 2 = 2  (example 2.1). As the determinant is nonzero, the

system has a unique solution (by Cramer’s rule).

Find determinants Дг and unknowns xt (i = 1,2,3):

9 2 1 
Aj = 3 1 0 

7 2 1
= 9 + 6 - 7 - 6  = 2. Xl=r 1;

a2 =

A3 =

2 9 1
1 3 0
0 7 1

2 2 9
1 1 3
0 2 7

= 6 + 7 - 9  = 4. x, = — = 2:

= 14 + 1 8 - 1 2 - 1 4  = 6, x, = — = 3 
3 2

5.3. SYSTEM OF LINEAR EQUATIONS CONSISTENCY CONDITION

Consider system (5.3) of m linear equations with n unknowns. Compose 

a block matrix by the addition of the constant term column to the right of matrix A . 

We obtain an augmented coefficient matrix:

4 i •" a Xn

(Л 9 =
a2l •" a 2 n

fN 
...

f f m l ••• amn к

(5.7)

'm x(n+ 1)

This matrix contains the whole information about the system of equations 

except for the unknowns denotation.

Kronecker-Capelli theorem. System Ax = b is consistent if  and only if  the 

rank o f the coefficient matrix is equal to the rank o f the augmented coefficient 

matrix: rg A = rg (A \ b).



Example 5.2. Has the system

xx + 2x3 + x4 =1,

< 2xx + x2 + x4 = 0 ,

3xj + x2 + 2x3 + 2x4 = 2

any solutions?

□  Let’s compose coefficient and augmented coefficient matrices:

"1 0 2 Г " 1 0  2 1 n
A = 2 1 0  1 . L I 0 = 2 1 0  1 0

v3 ! 2 2y v3 1 2 2 2,

The rank of matrix A is equal to 2, because it has nonzero minors of the 

second order and its third row equals to the sum of the first and the second rows. 

Therefore, the third row can be excluded by the Property 4 (section 3.2), and the rank 

will remain the same.

The rank of the augmented matrix is equal to 3, because it has nonzero minor 

of the third order, e.g. the minor, composed from the first, second and the last 

columns of the augmented matrix:

M 123
125

1
2
3

0
1
1

1
0
2

= 2 + 2 -3  = l * 0 .

Hence, rg А Ф rg(A | 6) and the system is inconsistent (has no solutions). ■

5.4. GAUSS-JORDAN ALGORITHM FOR LINEAR EQUATIONS

SYSTEM SOLUTION

Consider system (5.1) of m linear equations with n unknowns. To obtain 

solutions it is necessary to make the following steps:

1. Compose an augmented coefficient matrix (5.7):

( A \ b )  =
an ■

..
. 

J5 a V

Ka m\ * amn K j



2. By the elementary row transformations of matrix(/4 | b) , reduce the matrix 

to echelon form (section 1.2.6). If the basis minor of matrix A is situated in the first

r rows and r columns, we will obtain the following form:

(
1 a\2 ••• к ••• Щп

у

0 1 ••• a2r ••• a2n k

и 0 0 ... i br
0 0 ... 0 ... о

*rtl

0
'v

0 ... 0 ... о

3. Check the system’s consistency. To do this it is necessary to find ranks of 

matrices^ and(y4 | by.

rg A = xg A = r -  number of nonzero rows in matrix A ;

rg(A | b) = rg(ri |
r +1, if br+i^O ,

r, if br+l= 0.

If rgri^rg(ri|Z >) and br+i* 0, then the system has no solutions. The 

algorithm should be terminated.

If rgri = rg(ri | b) and br+l = 0, then the system is consistent. The process 

should continue.

4. If the system is consistent (rgri = rg(ri | b) = r), matrix (A \ b̂ j should be

reduced to echelon form (section 1.2.6). Using the elementary row transformations 

the matrix should be reduced to the form, in which each column (which is a part of 

the basis minor) has all elements equal to zero except for one (which is equal to 1). If 

the basis minor of matrix A is situated in the first r rows and first r columns, the 

matrix can be reduced to the following simplified form:



(A-\b')  =

' l 0 • 0 a U i  • •' a \n

0 1 • 0 a 2 r+1 •• a 'ln К

0 0  • • 1 < r +1 • •• a 'rn К

0 0 • • 0 0 • •• 0 0

о 
••

0 • • 0 0 • •• 0 о V

(5.9)

Previous four steps are called the forward pass of Gauss-Jordan algorithm. As the 

result of the forward pass the initial system substantially simplifies to the form 

Afx = bf :

xl + a[r+lxr+x + ... + a[nxn=b[,
(5.10)

x + a' ,x м +... + d x = b' .r r r+ 1  r+1 r n n r

5. By the simplified form (5.9) we divide all unknowns xx,x2,...,xn into two 

groups: basis and free. Unknowns, which correspond to the columns, that form basis 

minor, are called basis variables, other unknowns -free  variables.

For the system (5.10) basis variables are xl,x2,...,xr, free variables are

jcr+i ,xr+2,...,xn. Denominate basis variables (5.10) by free ones:

Xj — bx ax r+lxr+x ■~aXnXn

b[r a r r+ \X r + 1 a xr n n

(5.11)

If matrix rank r equals to the number of unknowns n (r = rg A = n), then the 

left block of matrix (5.9) will be an identity matrix En:

' l  0 ... 0 4 )

( A  | b') =
0 1 ... 0 к

sP 0
... 1 К

All unknowns xx,x2,...,xn will be basis and formula (5.11) will define the 

unique solution of the system:



(5.12)

If matrix rank is less than the number of unknowns (rg A < n ), then the system

will have an infinite number of solutions, defined by formula (5.11), which will have 

the following properties:

• for any values of free variables xr+1, xr+2 by the formula (5.11) we will 

obtain such values of basis variables, that the ordered set of numbers xl,x2,...,xn will 

be the solution of the system (5.1);

• any solution x1,x2,...,xn of system (5.1) will satisfy equalities (5.11).

Equalities (5.11), which denominate the basis variables by the free ones, are 

called the general solution of the system (5.1).

The solution, obtained by formula (5.11) with the exact values of free 

variables, is called the particular solution of the system (5.1).

The process of the solution of a consistent system (5.1) is terminated with 

obtaining the formula (5.11) of a general solution (in particular, the process is 

terminated with the definition of the exact solution (5.12)).

Step 5 is called the backward pass of Gauss-Jordan algorithm.

Example 5.3. Solve the systems of equations

x{ + 2x2 -  2x3 = 1, Xj + 2x2 -  2x3 = 1,
Ху + 3x2 -  Зх3 = 1, jq + 3x2 -  Зх3 = 1,
3jq + x2-  2x3 = 1, 3jq + x2 -  2x3 = 1,

d) 12jtj + 3x2 + x4 = 0,
3jtj + 4x2 + 2x3 + 2x4 = 1.



□  а) 1. Compose the augmented coefficient matrix: (A \ b) =

2. By the elementary transformations of rows of matrix ( A \ b ) ,  we reduce it to 

echelon form. We choosean =1*0  as a pivot element. We add the first row 

multiplied by (-1) to the second row, the first row multiplied by (-3) -  to the third 

row, the first row multiplied by (-2) -  to the fourth row:

1 3 - 3 1  
3 1 - 2 1 '

a 2 -2 1) a 2 -2 1 ^

й)=
l 3 -3 1 0 1 -1 0
3 1 -2 1 0 -5 4 -2

,2 -1 1 3, ,0 -5 5 1 ,

The pivot element is a22 = 1Ф 0 . We add the second row multiplied by 5 to the third 

and to the fourth rows:

( A \ b )

n 2 -2 n (l 2 -2 1 >
0 1 -1 0 0 1 -1 2
0 -5 4 -2 0 0 -1 -2

-5 5 К .0 0 0 К

The augmented matrix is reduced to echelon form.

3. We calculate the ranks of matrices: rg A = 3, rg(A \ b) = A. By the

Kronecker-Capelli theorem the system is inconsistent. The last equation of the 

system has the following form: 0 = 1 (incorrect equality). Thus, the system has no 

solutions.

b)

xl + 2 x 2 -  2x3 = 1, 
Xj + 3x2 -  Зх3 = 1, 
3jCj + x2 -  2x3 = 1,
2 jCj -  x 2 +  x 3 =  2.



1. Compose the augmented coefficient matrix: (A \ b)

(1 2 -2 n
1 3 -3 1
3 1 -2 1

v2 -1 1 2,

The only difference from system "a" is the element b4 = 2.

2. Reduce the augmented matrix to the echelon form by the repetition of the 

same steps from example ”a":

"1 2 --2 '1 2 -2 n

A 1 b) =
1 3 --3 1 0 1 -1 0
3 1 --2 1 0 --5 4 -2

v2 --1 1 2y v0 --5 5 o ,

"1 2 -2 1 > '1 2 -2 V\
0 1 -1 0 0 1 -1 0

= A b
0 0 -1 -2 0 0 1 2

оо
0 o , ,0 0 0 0,

3. Calculate the ranks of matrices: r = rg A = rg(A | b) = 3 . By the Kronecker- 

Capelli theorem the system is consistent.

4. Reduce the matrix to simplified form. As the basis minor we choose М\Ц.

We add the second row multiplied by (-2) to the first row, and then we add the third 

row to the second row:

"1 2 -2 n

оо

п

оо

п
0 1 -1 0 0 1 -1 0 0 1 0 2
0 0 1 2 0 0 1 2 0 0 1 2

ооо

о,

ооо

0,

ооо

о,

( A  | b').

5. The matrix rank r equals to the number of unknowns n ( r = 3 = n ). Thus, 

the system has a unique solution (all unknowns хг,х2,x3 will be basis and there will

be no free variables). From the simplified matrix (Af | b'J we obtain the unique

solution: xl =l; x2=2; x3 = 2, which is represented by the column x = (1 2 2)T.



[ xl + x2 + 2x3 = 4, 
c)

[Xj + 2x2 + 3x3 = 5 .

A 1 2 4"

ч1 2 3 5,
1. Compose the augmented coefficient matrix: ( A \ />) =

2. By the elementary transformations of rows of matrix (A | 6), we reduce it to 

the echelon form. We choose an = 1^0 as a pivot element. We add the first row 

multiplied by (-1) to the second row:

( A \ b )
(i 1 2 4" '1 1 2

si 2 3 5, 1 1

The augmented coefficient matrix is now in echelon form.

3. Calculate the ranks of matrices: rgA = rg(A | b) = 2 . By the Kronecker- 

Capelli theorem the system is consistent.

4. Reduce the matrix to simplified form. We choose МЦ as the basis minor

and add the second row multiplied by (-1) to the first row:

1 2 4' r\ 0 1 3'
> [o 1 1 к ,0 1 1 1 =(A' I *')•

5. Variables xl5 x2 are basis and x3 is free. We write the general solution 

accordingly to the formula (5.11):

U = 3 - * 3,
|x2= l - x 3.

The system has an infinite number of solutions. Let’s find a particular solution, e.g. 

for x3=0 we get Xj=3, x2 = l. Thus, the column x = (3 1 0) is particular 

solution of the system.

d)

Xj + x2 + 2x3 + x4 = 1,
< 2Xj + 3x2 + x4 = 0 ,

3Xj + 4x2 + 2x3 + 2x4 = 1.



" 1 1 2  1
1. Compose the augmented coefficient matrix: ( A \ b )  = 2 3 0 1 0

v3 4 2 2 К

2. By the elementary transformations of rows of matrix (A \ b) , we reduce it to 

the echelon form. We choose an = 1^0 as a pivot element. We add the first row 

multiplied by (-2) to the second row, and the first row multiplied by (-3) to the 

third row:

( l 1 2 1 1] f 1 1
2 1 n

2 3 0 1 0 ~ 0  1 - 4 - 1 -2

, 3 4 2 2 К 1° 1 - 4 - 1
- 2 ,

( A \ b )  =

The pivot element a22 = 1 ф 0. We add the second row multiplied by (-1) to the third

row:

( A \ b )
rl 1 2 1 Г '1 1 2 1 Г
0 1 -4 -1 -2 ~ 0 1 -4 -1 -2

v° 1 -4 -1 -2 , v° 0 0 0
= Ж -

The augmented matrix is now in echelon form.

3. Calculate the ranks of matrices: rgA = rg(A \b) = 2. By the Kronecker-

Capelli theorem the system is consistent.

4. Now the matrix should be reduced to simplified form. We choose МЦ as

the basis minor. We add the second row multiplied by (-1) to the first row:

Г l 1 2 1 Г (1 0 6 2 3 "
0 1 - 4 - 1 -2 ~ 0 1 -4 -1 -2

v° 0 0 0 0 0 0
( A’ | b').

5. VariablesXj, x2 are basis, and x3, x4 are free. The general expression can by

obtained by the formula (5.11):
Xj = 3 -  6x3 -  2x4 , 
x2 = -2 + 4x3 + x4.



The system has an infinite number of solutions. Let’s find a particular solution. For
Texample, for x3 = x4 = 0 we have x, = 3, x2 = -2.  Thus, column x = (3 -2  0 0) 

is a particular solution of the system. ■

5.5. HOMOGENEOUS SYSTEM GENERAL SOLUTION STRUCTURE

A homogeneous system of linear equations

В Д  ® \2 X 2 • +  v ,  =  ° .

Cl2 \X \  +  d 22X 2 +  • • * +  a 2nx n =  o ,
•<

Q m \X \ +  a m2X 2 +  ' "  +  a mnx r i = 0

or Ax = о

is always consistent, because it has a trivial solution хл = x2 =... = xn = 0 (x = o).

If the rank of the matrix is equal to the number of unknowns (rg A = n ), then 

the trivial solution is the only solution.

Suppose thatr = rg A < n . Then a homogeneous system has an infinite number 

of solutions.

Note that an augmented coefficient matrix of a homogeneous system (A | o) is 

reduced by elementary transformations to simplified form (A' | o), i.e. 

b[ = b[ =... = b[ = 0 in (5.10). Thus, from (5.11) we obtain a general solution of 

a homogeneous system.

X \ ~  a \ r + \X r+\

xr = - a rr+1xr+1~. . . - a  x.. ^ r n  n

(5.13)

Properties of homogeneous systems solutions

1. If columns cpj, cp2,..., are solutions of a homogeneous system of

equations, then any linear combination oqcpj + a 2cp2 + ... + a k<$k is also the solution 

of a homogeneous system.

2. If the rank of a homogeneous system coefficient matrix equals to r , then the 

system has (n -  r) linearly independent solutions.



Indeed, by the general solution formula (5.13) it is possible to find (n - r ) 

particular solutions cp1,cp2,...,cpn_r, assuming free variables equal to standard value

sets (assuming that all free variables are equal to zero except for the one that equals 

to 1):

1) xr+1= l,xr+2 = 0,.. . ,xn = 0:

2) xr+l = 0, xr+2 = 1 = 0:

n - r )  xr+l = 0 ,xr+2 = 0,.. . ,xn

<pl = 1( a \ r+1 ••• ~ < r +1 1 0 \ T... 0) ;

ф2 = ( _ 'a \r+ 2 ••• ~ a 'rr+ 2 0 1 О ♦

9- = ( - < • • • -a'r n 0 0 ... i f .

As the result we will get (n -  r) solutions:

( -a ' )U \r+\ (-а ' ЛW1 r+2 ( - d  \
U \n

f t
~ ® r  r+1 ~arr+2 ~ a rn

1 II<N
9- 0 4J -e l и 0

0 1 0

, 0 , , 0 2 ч 1 ,
which are linearly independent.

Any combination of {n -r )  linearly independent solutions cp1,cp2,...,cpn_r of 

a homogeneous system is called a fundamental system of solutions.

Note that a fundamental system of solutions is defined ambiguously. A 

homogeneous system can have different fundamental systems of solutions, each 

consisting of the same number {n -  r) of linearly independent solutions.

Homogeneous system general solution structure. I f  a set cp1,cp2,...,cpn_r is 

a fundamental system o f solutions o f a homogeneous system (5.4), then the column

* = С1-ф1+С2-ф2 + "- + С№_г-фя_г (5.14)

for any arbitrary values o f Сл, C2,..., Cn_r is also a solution o f system (5.4), and vice 

versa, for any solution x o f this system it is possible to find such values o f C,, C2,..., 

Cn_r, that make equality (5.14) correct.



Matrix Ф = (cp, cp2 ••• фи_г), which columns compose a fundamental

system of solutions of a homogeneous system, is called fundamental. By the 

fundamental matrix, general solutions can be expressed in the following form

1-5. Make the first five steps of Gauss-Jordan algorithm (section 5.4). At the 

same time there is no need in checking consistency of the system (because any 

homogeneous system has trivial solution), so step 3 can be skipped. Get formula 

(5.11) of a general solution, which will be in form (5.13).

If the rank r of a matrix equals to the number of unknowns n ( r = rgA = n ), 

then the system has a unique trivial solution x = o and the solution process 

terminates.

If the rank of a matrix is less than the number of unknowns (rg A < n ), then the 

system has an infinite number of solutions. The solution set structure will be found in 

the next steps.

6. Find the fundamental system of solutions ф!, ф2,..., фп_г of the homogeneous 

system. To do this, it is necessary to put the set of (n -  r) standard values (where all 

free variable are equal to zero except for one) consecutively into (5.13) (property 2 of 

homogeneous system solutions).

7. Write the general solution by the formula (5.14).

Example 5.4. Find fundamental systems of solutions and general solutions of 

homogeneous systems:

х = Ф-с,

where c = (Q • • • Cn_r )r -  is a column of arbitrary constants.

Homogeneous system solution algorithm

+ x2 + 2x3 + x4 — 0,

a)



f 1 1
2 (V

J  2 3
□  а) 1. Compose the augmented coefficient matrix: (ri | o)

2 4. By the elementary transformations of rows reduce matrix (A | o) to 

echelon and then to simplified form (example 5.3,"c"):

( A \ o )  =
n  i 2 o' "1 1 2 o' "1 0 1 o '

,1 2 3 0, v° 1 1 0, K0 1 1 0,
= (A ' \o ) .

Step 3 is skipped.

5. Variables xl5 x2 are basis and x3 is free. Write formula (5.13) for the 

general solution of the homogeneous system

x X.3 5

— X3 .

6. Find the fundamental system of solutions. As n = 3 and r = rg A = 2 , it is

necessary to find n -  r = 1 linearly independent (i.e. nonzero) solutions. We put a 

standard value of the free variable into the formula of the general solution. If x3 = 1, 

then Xj = - l ,  x2 = - l ,  i.e. the fundamental system of equations consists of a single 

column

<Pi = -1

7. Write the general solution of the homogeneous system by the formula (5.14):

f-f*
x = Cj- -1

where Cx is an arbitrary constant.

х̂  + x2 + 2x3 + x4 — 0,

b)



' 1 1 2  1 0"
1. Compose the augmented coefficient matrix ( A | 0 ) = 2 3 0 1 0

3̂ 4 2 2

2-4. By the elementary transformations of rows reduce matrix (/4 | o) to 

echelon and then to simplified form (example 5.3,"d"):

(A' | 0) =
'1 0 6 2 0"
0 1 -4 -1 0

4° 0 0 0
Step 3 is skipped.

5. Variables x1, x2 are basis and x3, x4 are free. Write formula (5.13) for the

general solution of the homogeneous system:
jCj = — 6x3 -  2x4 ,

x2 = 4x3 + x4.

6. Find the fundamental system of solutions. As n = 4 and r = rgA = 2,  it is 

necessary to find n - r  = 2 linearly independent solutions. Put standard value sets of 

free variables into the system:

• if x3 = 1, x4 = 0, then xl = -  6 , x2 -  4;

• if x3 = 0, x4 = 1, then хг =-2 ,  x2 = 1.

As the result we have obtained the following fundamental system of equations

f “ 6 l
'-2 '

4 1
<pl =

1
> Ф2 =

0

, 0 ,

7. Write the general solution of the homogeneous system by the formula

(5.14):

Note that the fundamental 

values of free variables, e.g.

f -6) ' -2A
4

+c2- 1
1 0

, 0 ,

system of equations can be obtained with another set of 

x3 = 1, x4 = 2 and x3 = 2, x4 = 3 .



Then we will get another fundamental system of equations

M o" M 8"
6 11

q>l = l , Ф2 = 2

V 2 , 4 3 ,
and the following general solution

MO" 00

6
+ C2 •

11
1 z 2

V 2 у V 3 ,

In spite of the difference, both formulas describe the same set of solutions. ■

5.6. NONHOMOGENEOUS SYSTEM GENERAL SOLUTION

STRUCTURE

In section 5.4 there was the formula (5.11) of a system of linear equations 

general solution. Let’s show another form, which represents the structure of a 

solution set.

Consider an nonhomogeneous system

Ax = b

and the corresponding homogeneous system

Ax = o.

Nonhomogeneous system general solution structure. Let xp be the particular 

solution o f an nonhomogeneous system and cp,, cp2,..., cpn_r compose the fundamental

system o f equations o f the corresponding homogeneous system o f equations. Then the 

following column

x = xp + C, • cp, + C2 • cp2 + • • • + Cn_r • cp„_r (5.15)

for any arbitrary values of C,, C2,..., Cn_r is the solution o f the nonhomogeneous

system, and vice versa, for any solution x o f  this system it is possible to find such 

values o f constants C,, C2,..., Cn_r, that make equality (5.15) correct.



An nonhomogeneous system general solution is a sum of a particular solution 

of an nonhomogeneous system and a general solution of the corresponding 

homogeneous system:

x = xP + Q • Ф1 + C2 • cp2 + -  • + Cn_r • cpn_r .
4-----------------------------V------------------------------f  4---------------------------------------------------------------V---------------------------------------------------------------/

nonhomogeneous system homogeneous system
particular solution general solution

Nonhomogeneous system solution algorithm

1-5. Make the first five steps of Gauss-Jordan algorithm (section 5.4) and get 

the nonhomogeneous system general solution formula in a form (5.11).

6. Find a particular solution xp of the nonhomogeneous system by substituting 

free variables in (5.11) with zero.

7. Write formula (5.13) of the corresponding homogeneous system general 

solution and compose its fundamental system of solutions ф15ф2,...,фп_г. To do this

it is necessary to put (n -  r) standard sets of values (where all free variables are

equal to zero except for one) consecutively in (5.13).

8. Write the nonhomogeneous system general solution by the formula (5.15). 

Note that the nonhomogeneous system solution ( Ax = b ) can be expressed with

the fundamental matrix Ф of the corresponding homogeneous system Ax = о in the 

following form

X  =  xp +  Ф • c ,

where xp is a particular solution of the nonhomogeneous system;

c = (C{ • • • Cn_r )r -  arbitrary constants column.

Example 5.5. Find the nonhomogeneous system general solution structure

(5.15):

a) b)

Xj + x2 + 2x3 + x4 — 1, 
2xj + 3x2 + x4 = 0 ,
3xj + 4x2 + 2x3 + 2x4 = 1



□  a) 1-5. The first five steps of Gauss-Jordan algorithm were performed during the 

solution of example 5.3,"c". The following formula for the nonhomogeneous system 

general solution was obtained:

x X3 э
1 -  XQv2 л3 •

Variables x1, x2 are basis; x3 is free.

6. Assuming x3 = 0, we obtain the particular solution of the nonhomogeneous 

system xp =(3 1 0 )  (example 5.3,"c").

7. Find the fundamental system of equations of the corresponding 

homogeneous system (example 5.4,"a"): ф1 = (-1 -1 1)T .

8. By the formula (5.15) write the nonhomogeneous system general solution

x = xp + C1 • ф1 =

The initial solution set structure is found.

'  3" Г-1Л
1 + C1 • - 1

ч 0  , ч 1 ,

b)
x1 + x2 + 2 x3 + x4 — 1,
2x1 + 3x2 + x4 = 0 ,
3 x1 + 4 x2 + 2 x3 + 2 x4 = 1.

1-5. The first five steps of Gauss-Jordan algorithm were performed during the 

solution of example 5.3,"d". The following formula for the nonhomogeneous system 

general solution was obtained:

x 3 -  6 x3 -  2 x4,
x2 = -2 + 4 x3 + x4

Variables x1, x2 are basis; x3, x4 -  free.

6. Assuming x3 = 0 , x4 = 0 , we obtain the particular solution of the 

nonhomogeneous system

xp =(3 -2 0 0)T.



7. Find the fundamental system of solutions of the corresponding homogeneous 

system (example 5.4):

Ф, = ( - 6  4 1 0)r , <p2 = (-2  1 0 1)'.

8. Write the nonhomogeneous system general solution by the formula (5.15):

'  3 " r - 6 ) '-2 '
- 2 4 1

x — лТ +  Cj • +  C2 • cp2 —
0

+  Q  •
1

+ c 2 •
0

, 0 ,

The initial solution set structure is found.

EXERCISES

1. Solve the system using Gauss-Jordan algorithm:

Г jCj + 2 x 2 + 2x3 = m ,
[2xj + 4x2 + 3 x3= n .

2. Find the fundamental system of solutions and write the general solution structure:

f x1 + x2 + nx3 + mx4 = 0,
[ 2xx + 3x2 + x3 + x4 = 0 .



CHAPTER 6. EIGENVECTORS AND EIGENVALUES

OF MATRICES

6.1. BASIC DEFINITIONS AND PROPERTIES

Let A be a square matrix of order n . A nonzero column x =
f  x ^

\ X n J

, that satisfies

A-x = X-x,  (6.1)

is called an eigenvector of matrix A .

The number X in equality (6.1) is called an eigenvalue of matrix A. We say 

that x is an eigenvector corresponding to the eigenvalue X .

Let’s set a problem of matrix eigenvalues and eigenvectors calculation. 

Definition (6.1) can be rewritten as

(A -X E ) -x  = o ,

where E is an identity matrix of order n . Hence, condition (6.1) is a homogeneous 

system of n linear algebraic equations with n unknowns xl , x2,..., xn:

(an -  X) x1 + al2 x2 +... + aln xn = 0,

fl?2i + (̂ 22 _ X2 + ... + Xn—®’

anlxx + an2x2 + ... + (ann- X ) x n = 0.

Since we are only interested in nontrivial solutions ( x ^ o )  of the 

homogeneous system, then the determinant of the system matrix must be equal to 

zero:

det(H - XE) =

an - X an a X n

a2x

<<i 
...

<N<N a 2n = 0. (6.3)

a nX a n2 "• a n n ~ ^

Otherwise by Cramer’s rule the system has a unique trivial solution.



The problem of eigenvalues calculation is reduced to the solution of the 

equation

det(^4- XE)

an -  X a \2 •" a in

a 2i a22 1̂. •" a 2n

° n l a n2 •" ann- \

= 0

which is called the characteristic equation of matrix A .

The roots o f the characteristic equation (6.3) are the only eigenvalues o f a 

matrix.

By the fundamental theorem of algebra in the general case the characteristic 

equation has n complex roots (counted with multiplicity). Any square matrix has 

eigenvalues and eigenvectors.

Eigenvalues of a matrix are uniquely determined (counted with multiplicity) 

and eigenvectors are ambiguously determined. A set of all eigenvalues of a matrix 

(counted with multiplicity) is called its spectrum. The spectrum of a matrix is called 

simple, if all its eigenvalues are pairwise different (all roots of the characteristic 

equation are simple).

6.2. PROPERTIES OF EIGENVECTORS AND EIGENVALUES

Let A be a square matrix of order n .

1. Eigenvectors corresponding to different eigenvalues are linearly 

independent.

2. A nonzero linear combination of eigenvectors corresponding to one 

eigenvalue, is an eigenvector corresponding to the same eigenvalue.

3. Let (/4 -  XEy be the adjoint matrix to the characteristic matrix (A - Т Е ). If

X0 is an eigenvalue of matrix A , then any nonzero column of matrix ( A -  X0E)+ is 

an eigenvector corresponding to the eigenvalue A,0.

4. To extract the maximum linearly independent subsystem from the set of 

eigenvectors, it is necessary for all distinct eigenvalues \ , . . . , 'k k write in sequence



systems of linearly independent eigenvectors, in particular write in sequence the 

fundamental systems of solutions of homogeneous systems

( A - X xE}-x = o, ( A - X2E)-x = o,..., ( A - X kE)-x = o .

Algorithm for calculation of eigenvectors and eigenvalues

To calculate eigenvectors and eigenvalues of a square matrix A of order n we 

should make the following steps:

1. Compose the characteristic equation of the matrix

Ea (^) = det(^4 -XE).

2. Find all distinct roots X1,...,Xk of the characteristic equation (X) = 0; it is 

not necessary to find multiplicities nx, n2,..., nk (^  + n2 +... + nk = n ) of the roots.

3. For the root X = Xl find the fundamental system of solutions cp1,cp2,...,cpn_r 

(r  = rg (A -  \ E )) of a homogeneous system of equations

(A -X ]E')-x = o .

To do this we can either use the algorithm for solving a homogeneous system 

or one of the methods for finding a fundamental matrix.

4. Write down linearly independent eigenvectors of A that correspond to the 

eigenvalue Хг:

s1=Cl -yl,s2=C2-Ф = Cn_r ■ cp„_r, (6.4)

where C\ , C2,..., Cn_r are nonzero arbitrary constants. A set of all eigenvectors 

corresponding to the eigenvalue Хг consists of nonzero columns that have the form 

s = Q • cpj + C2 • cp2 +... + Cn_r ■ cp„_;.. Hereinafter we will denote eigenvectors of a 

matrix by the letter 5.

Repeat steps 3 and 4 for other eigenvalues X2,...,Xk.

Example 6.1. Find eigenvalues and eigenvectors of matrices:

A =
1 - 2 '  

3 8
B =

(i  l n  
1 1 1 
1 1 1

c  =
0 2^

v-2 0,



□  Matrix А :

1. Compose the characteristic polynomial of the matrix: 

l - X  -2
8 - ^

= ( l - ^ ) ( 8 - ^ )  + 6 = ^2- 9 ^  + 8 + 6 = ^2- 9 ^  + 14.

2. Solve the characteristic equation:

X2 - 9X + 14 = 0 => X: = 2, X2 = l  (simple spectrum).

31. For the simple root Xx = 2 compose a homogeneous system of equations

(A -  XxE)- x = o:

(1 -2  - 2 ^ ( x A
8-2 \ X2J

f 0lA
f - l ^ x, ^

V *2  J A
Solve this system using Gauss-Jordan algorithm, reducing the augmented coefficient 

matrix to the simplified form:

' -1 -2 o' A 2 o' (1 2 o '

v 3 6 v3 6

оо

0,

The rank of the system matrix is equal to 1 ( r = 1), the number of unknowns is n = 2 , 

hence a fundamental system of solutions consists of one ( n - r  = 1) solution. 

Denominate the basis variable x1 by the free one: x1 = -2x2. Suppose x2 = l,  and

^-2Л
obtain the solution cpx =

v l ;

41. Write eigenvectors corresponding to the eigenvalue л, = 2: л, = С, • .

f -2^
where Q is a nonzero arbitrary constant: ■s^C-cp^C,

V1 /
2

3 . For the simple root X2 =7 compose a homogeneous system of equations 

[A - X2E) - x  = o :

(1 - 1 \  Г v \•/Vi

8 -7 \ X 2 J

'(Г

A
-6 -2^i
3 1 \ X2J ,0 ,

Solve this system using Gauss-Jordan algorithm, reducing the augmented coefficient 

matrix to the simplified form:



( - 6  - 2 0 " ( 3 1 0 " ( 1 1  
1 3 0 " ( 1 1  1 3 0  ̂

V 3  1 0  У V- 6  - 2 0  у V- 6  - 2 0  у

оо

0  У

The rank of the system matrix is equal to 1 ( r = 1), the number of unknowns is n = 2, 

hence a fundamental system of solutions consists of one (n -  r = 1 ) solution.

Denominate the basis variable x1 by the free one: x1 = -  3  x2. Suppose x2 = 1, we

have the solution ф2
3

1 у
2

4 . Write eigenvectors corresponding to the eigenvalue X2 = 7 : s2 = C2 • ф2. 

where C2 is a nonzero arbitrary constant: s2 = C2 • ф2 = C2
3

V 1 У

Matrix B :

1 . Compose the characteristic polynomial of the matrix:

AB (X) = | B -X E  | =
1 -X 1 1

1 1 -X 1

1 1 1 -X
= (1 -  X) 3 + 2 -  3 (1 -  X) = -X3 + 3X2

2. Solve the characteristic equation: -X3 + 3X2 = 0 ^  X1 = 3, X 2 = X 3 = 0

(spectrum).

31. For the simple root X1 = 3 compose a homogeneous system of equations 

(B -  X1E ) • x = o :

- 2  x1 + x2 + x3 = 0 ,(1 -  3 1 1 " (x1 л ( 0 " с

1 1 -  3 1 x2 = 0 or <

v 1 1 1 -  3 у V x3 У V 0  у

x1 -  2  x2 + x3 = 0 , 
x1 + x2 -  2  x3 = 0 .

Solve this system using Gauss-Jordan algorithm, reducing the augmented coefficient 

matrix to the simplified form (pivot elements are in bold italics):

(  -X 1E | o ) =
( - 2 1 1 0 " ( 1 1 - 2 0  ̂

1 - 2 1 0 ~ - 2 1 1 0

V 1 1 - 2 0  У V 1 - 2 1 0  У



1 -2 0" f  1 1 -2 0" f l 0 -1 0"
0 3 -3 0 ~ 0 1 -1 0 ~ 0 1 -1 0

v° -3 3 0 0 к0 0 0

The rank of the system matrix is equal to 2 (r  = 2), the number of unknowns is 

n = 3, hence a fundamental system of solutions consists of one ( n - r  = 1) solution.

Denominate basis variables хл, x2 by the free one x3: *1 * 3  ’

[X2 = X 3 ,

and, suppose x3 = 1, we obtain the solution cp
f i \
1

vly

41. Calculate all eigenvectors corresponding to the eigenvalue A., = 3 by 

formula .v = (\ ■ cp, where C, is a nonzero arbitrary constant.

3 . For the double root X2=X3=0 we have a homogeneous system В ■ x = о .

Solve it by using Jauss-Jordan algorithm:

( B | o )
f \  1 1 0" f l  1 1 0"
1 1 1 0 ~ ооо

0

v1 1 1

ооо

The rank of the system matrix is equal to 1 (r = 1), hence a fundamental system 

of solutions consists of two ( n - r  = 2) solutions.

Denominate the basis variable xl by the free ones x1 = - x 2 -  x3. Assuming

standard value sets of free variables x2 = 1, x3 = 0 and x2 = 0, x3 = 1 we obtain two

Г-С (-1Л
solutions: cpj = 1 , ф2 = 0

4 . Write a set of eigenvectors corresponding to the eigenvalue X2 = 0 : 

s = C'j • <Pj + C2 • (p2, where Q , C2 are arbitrary constant, not equal to zero at the same

time.



In particular, for Q = 0, C2= - 1 we have ^= (1  0 - l ) r ; for Q = - 1,

C2 = 0 we have x2=(l -1 0)7 . Adding the eigenvector £3=(1 1 l)7

corresponding to the eigenvalue Xl = 3 (see step 41 for Q = 1), to these eigenvectors, 

we find three linearly independent eigenvectors of matrix В :

f  n f  n r n

*1 = 0 , s2 — -1 1

4 ° ,
Matrix C :

1. Compose the characteristic polynomial of the matrix:

Ac (^) = |C-Aii
-X  2 
-2 -X

( - ^ ) ( - ^ )  + 4 = ^2 + 4.

2. Solve the characteristic equation:

X2 + 4 = 0 => Xl = 2 i , X2 = -2 i (simple spectrum).

31. For the simple root Xl = 2i compose a homogeneous system of equations 

(C - X 1E)-x = o\

r-2i 2 " '  x ^ "O'
4 -2 -2 i y \ X2j

Solve this system using Gauss-Jordan algorithm, reducing the augmented 

coefficient matrix to the simplified form:

"-2/ 2 0" f 1 i 0" f l  i (Г

, - 2 -2i v-2 -2 i

оо

The rank of the system matrix is equal to 1 ( r = 1), the number of unknowns is 

n = 2, hence a fundamental system of solutions consists of one (n -  r = 1) solution. 

Denominate basis variable xl by the free one: x1 = - i x 2. Suppose x2 =1, we

Г-Л
obtain the solution cpj =

V V

41. Write eigenvectors corresponding to the eigenvalue Xl = 2i: s{ = C, • cp,,

where Q is an arbitrary nonzero complex number. 

96



3 . For the simple root X2 = -2 i compose a homogeneous system of equations 

(C- X2E }■ x  = o:

r 2i 2" ^XjN '(P
K-2 2 i; A

Solve this system using Gauss-Jordan algorithm, reducing the augmented 

coefficient matrix to the simplified form:

r 2 i 2 o' '  1 - i o' f  1 - i (Г

v-2 2i 0, K-2 2 i 0, 0 °y

The rank of the system matrix is equal to 1 ( r = 1), the number of unknowns is 

n = 2, hence a fundamental system of solutions consists of one (n -  r = 1) solution. 

Denominate the basis variable xl by the free one: Xj =ix2. Suppose x2 = 1, we

(Лhave the solution cp2 =
w

4 . Write eigenvectors corresponding to the eigenvalue X2 = - 2 i : s2 = C2 ■ cp2 , 

where C2 is an arbitrary nonzero complex number.

EXERCISES

Find the eigenvalues and corresponding eigenvectors of matrices:

rm in'
; b)

'  n n
m m m

Kn n y
vl 1 К



CHAPTER 7. QUADRATIC FORMS

7.1. DEFINITION

A quadratic form  in variables xl,...,xn is an expression given by

(7Л)
i=l J =  1

where coefficients atj, not all equal to zero, satisfy the symmetry conditions ay = ap , 

i = \,...,n, j  = . We put this restriction without loss of generality, since a sum of

two similar terms аухгху + ajixjxi with unequal coefficients atJ ф ap (for / ф j ) can 

always be replaced by a sum <y' xjc7 + a'jix j x i with equal coefficients, setting

Let’s consider real quadratic forms, coefficients of which are real numbers 

and variables take real values.

Combining terms the quadratic form (7.1) can be rewritten as

q(x) = a1 jxf + 2йг12х1х2 +... + 2aXnxlxn + a22xl + 2a23x2x3 +... + annx2n. (7.2)

This is a quadratic form with combined terms.

A symmetric matrix A = (я ), made up from coefficients of the quadratic form

(7.1) is called a matrix of the quadratic form. The determinant of this matrix is 

called the discriminant, and its rank is called the rank of a quadratic form.

A  quadratic form is called singular if its matrix is singular (rg A < n ) , otherwise if 

the matrix is nonsingular (rg A = n ), a quadratic form is called nonsingular.

Composing a column matrix of variables x = (jj ••• xn)r a quadratic form 

can be written in matrix form:

q(x) = x T - A - x . (7.3)

An important example of a quadratic form is the second differential of 

function /(x )  with vector argument x = (Xj ••• xn) T:



(7.4)d 2m = T L
д2Я х) ^  ^  _ j jr  d 2f ( x )

i м Sxidxj
dXidXj = dxT ■ J KJVJ ■ dx. 

J dx dxi=1 - i- - ]

where differentials dxx,..., dxn are variables of the quadratic form; a matrix of 

second-order partial derivatives (Hessian matrix)

( д г/ ( х ) Л 

v Эх, в * ,

d 2f ( x )
dxTdx

d2f{x ) з 2/ М )
dx2 dxxdxn

d2m d2f(x )
dxndxx dx2n J

(7.5)

computed for a fixed value of an argument, is a matrix of the quadratic form, and the 

differential of vector argument dx = (dxx ■ • • dxn) T is a column of its variables.

Example 7.1. For the function f{x ) = 2x2 + xxx2 + x2 write the second 

differential d 2f{ x ) in matrix form (7.4).

□  The given function f{ x )  = f ( x x,x2) has two arguments xx, x2. Compose the

matrix of second order differentials, i.e. the Hessian. First find first-order partial 

derivatives:

d f{x ) = 4xx + x2; d f(x )
dxx 1 dx2

and then -  second-order partial derivatives: 

d2f(x )

= xx + 2x 2 ,

dx2x
= 4; d2 f{x )  _ d 2 f( x )  d2 f{x )  2

дххдх2 dx2dxx dx,

f  d2f ( x ) ) (4 П

l i  V
Then by formula (7.5) compose the Hessian matrix

The second differential of function f(x )  = / (xt,x2) is a quadratic form (7.4) of

2 2 d2 f(x)
differentials dxx, dx2 : d 2f  (x) = dxi dXj = 4dx\ + ldxxdx2 + 2dx2 =

i ' м  d x tdx,»=i j

= {dxx dx2)
(4 Г

1 2
f  dxx  ̂
\dx2 j

= dxT •
(4 О  

1 2
■dx .



Any quadratic form q(x) = xT A x can be transformed to the canonical form

q(Sy) = \ y l  + X2y\ +... + Xny 2n

via linear non-degenerate change of variables x = Sy (det^ Ф 0) where \ , . . . ,X n are 

eigenvalues of matrix A .

7.2 DEFINITE AND INDEFINITE QUADRATIC FORMS

A real quadratic form q(x) = xT ■ A ■ x is called positive (negative) definite if 

q(x) >0 (q(x) < 0) for any х ф о  . Positive and negative definite forms are called 

definite.

If a quadratic form takes on both positive and negative values, it is called 

indefinite. Definite and indefinite quadratic forms are denoted by q(x) > 0, q(x) < 0,

q(x) < 0, respectively.

A minor of A of order к is principal if it is obtained by deleting (n -  k) rows 

and the (n -  к) columns with the same numbers. The leading principal minor of A 

of order к is the minor of order к obtained by deleting the last (n -  k) rows and 

columns.

Sylvester’s criterion. A quadratic form q(x) = xT ■ A -x is positive definite if 

and only i f  all leading principal minors o f its matrix are positive:

\ =an >®-> A2
a \ 1 a \2 

®21 2̂2
> 0 . An = det^4>0.

A quadratic form is negative definite if  and only i f  leading principal minors o f its 

matrix change signs starting from the negative one:

Aj =an < 0 , A2 a\ 1 a\2
О 21 a22

>0,..., ( - l ) X = ( - l ) " d e U > 0 .

A quadratic form is indefinite if  at least one principal minor o f even order is 

negative, or two principal minors o f uneven order have different signs (sufficient 

criterion for indefiniteness of a quadratic form).



Criterion for definiteness and indefiniteness of quadratic form 
by eigenvalues of its matrix

Let Xx,X2,...,Xn be eigenvalues of matrix A, corresponding to a quadratic 

form q{x) = xT ■ A- x . Eigenvalues of a real symmetric matrix are real.

1) A quadratic form q(x) = xT-A-x  is positive definite if and only if all 

eigenvalues of its matrix are positive: Xx > 0, X2 > 0 . . ,  Xn > 0.

2) A quadratic form q{x) = xT ■ A -x  is negative definite if and only if all 

eigenvalues of its matrix are negative: X1 < 0, X2<0,..., Xn<0.

3) A quadratic form q(x) = xT ■ A ■ x is indefinite if and only if its matrix has 

both positive and negative eigenvalues, i.e. Хг ■ Xj < 0 for at least one pair of 

eigenvalues (/ Ф j , 1 < i< n, 1 < j  <n).

Example 7.2. Determine whether quadratic forms of the given matrices are 

positive definite, negative definite or indefinite

A =
a  n
1 2

B =
-2  2 '  

2 -5
C =

- 1 1 1

1 - 1 1

1 1 - 2

□  The quadratic form q(x) = xT ■ A -x = xf + 2xxx2 + 2x22 is positive definite, since all 

leading principal minors of its matrix A are positive: A j= l> 0 , Д2=1>0 (see 

Sylvester's criterion).

The quadratic form q{x) = xT ■ В ■ x = -2x\ + 4xxx2 -  5x, is negative definite, 

since leading principal minors of its matrix В change signs, starting with the negative 

one: Aj = -2 < 0, A2 = 6 > 0 (see Sylvester's criterion). Let’s check this conclusion by 

examining eigenvalues of matrix В :

det(£ -A £)
- 2 - X

2
2

-5-X
=  0 о X2 + 7X + 6 = 0.

Hence, Xx = -6 , X2 = - l .  Since both eigenvalues are negative, the quadratic 

form is negative definite. Thus, the quadratic form is definite.



The quadratic form q(x) = xT • C • x = -x f  + 2xxx2 + 2xxx3 -  xf + 2x2x3 -  2xf is

neither positive nor negative definite, since its leading principal minors do not meet 

Sylvester’s criterion: Aj = -1 < 0 , Л2 = 0, A3 = 4> 0  (conditions (7.12) and (7.13)

are not fulfilled). Let’s calculate principal minors of this matrix:

M \ = Aj = -1 , M 22 = - 1, M \ = -2 ;

M \l =
-1 1 
1 -1

о,  m ;33 = - i  i
1 -2

=  1, Ml -1 1
1 -2 = i ;

м 123
123 A -de tC  = 4.

There are minors of uneven order that have different signs, e.g. M 22 = - 1<0, 

М Ц  = 4 > 0. Hence, the quadratic form is indefinite (see criterion for indefiniteness). 

Let’s check this conclusion by examining eigenvalues of matrix C :

det(C -A ^)
- 1 - ^  1

1 - 1 - ^
1 1

1
1

-2-X

=  0 <=> V  + 4X2 + 2 X -4  = 0.

Hence, Xx = - 2 ,  X2 = — 1 — л/з , L3 = -1 + л/з . Since the matrix has both 

positive and negative eigenvalues ( ^  • A3 = -2 -(-1  + л/3)<0), the quadratic form

q(x) = xT ■ C ■ x is indefinite. ■

EXERCISES

Determine whether quadratic forms are positive definite, negative definite or 

indefinite (by Sylvester’s criterion) and calculate norms of corresponding matrices:

a) f ( x )  = mxf - nxx +nx2 +mx2 + xxx2 +2;

b) / (jc) = -x f  + 2nxx -  4xf -  4mx2 -  n2 -  m2.



PART II. ANALYTIC GEOMETRY

CHAPTER 8. VECTOR ALGEBRA

8.1. VECTORS AND VECTOR LINEAR OPERATIONS

8.1.1. Vector, Its Direction and Length

A vector is an ordered pair of points. The first point is called vector tail, the 

second -  vector head. A distance between head and tail is called length.

A vector with coincident tail and head is called zero vector, its length equals to 

zero. If vector length is a positive value, then it is called nonzero vector.

A nonzero vector can be defined as a directed segment. One of its bounding 

points is considered as the first (vector tail), and another -  as the second (vector 

head). Zero vector direction is, obviously, not determined.

A vector with the beginning in point A and ending in point В is denoted by

AB and depicted by arrow, directed to vector head (Fig. 8.1). Vector tail is also

called point of application. Vector AB is applied to point A. The length of vector 

AB equals to the length of segment AB and it is denoted by AB . With this

notation, vector length is also called magnitude, absolute value.

A C

Figure 8.1

A zero vector, e.g. CC , is denoted by symbol о and depicted by point (point 

C on Fig. 8.1).

A vector, which length equals to unit or assumed as a unit, is called unit 

vector.

Nonzero vector AB, beside directed segment, defines ray AB (with the 

beginning in point A) and lineAB.



Two nonzero vectors are called collinear, if they belong to one line or to two 

parallel lines, otherwise they are called noncollinear. Vector collinearity is denoted 

by symbol ||. A zero vector is considered as collinear to any vector, because its 

direction is not defined. Any vector is collinear to itself.

Equally and oppositely directed nonzero collinear vectors are denoted by t t  

and t i  accordingly.

Three nonzero vectors are called coplanar, if they lie in the same or parallel 

planes, otherwise they are called noncoplanar. Zero vector is coplanar to any other 

two vectors, because its direction is not defined.

Two vectors are equal, if they:

a) are collinear and equally directed;

b) have equal lengths.

All zero vectors are equal to each other.

This definition of equality characterizes so-called free vectors. Given free 

vector can be moved without change of its direction and length to any point of space 

(apply it to any point). As the result we will obtain vectors, which are equal to the 

given one.

It is possible to give equivalent definitions of collinearity and coplanarity.

Two nonzero vectors are called collinear, if they lie on one line after 

application to the same point.

Three nonzero vectors are called coplanar, if the lie in one plane after 

application to the same point.

Angle between nonzero vectors is an angle (not greater than n) 

between vectors, which are equal to them and applied to the same point.

Consider two nonzero vectors a and b (Fig. 8.2). Construct equal vectors О A 

and OB . In the plane, which contains rays О A and OB, we will obtain two angles 

AOB . The smaller one, which value cp is not greater than tl ( 0 < ф < tt ), is taken as

an angle between a and b .



It is not possible to define angle between two vectors if at least one of them is 

zero, because zero vector direction is not defined. From the definitions it follows that 

angle between nonzero collinear vectors equals to zero (if vectors are equally 

directed) of equals to n (if they are oppositely directed).

Example 8.1. Consider triangle ABC ; points L, M , N  are midpoints of its 

sides. For vectors in Fig. 8.3, determine which of them are collinear, equally directed, 

oppositely directed and equal. Show angles between vectors AM  and A N , MC and 

CL , AM  and M C , CL and BL .

□  By the triangle mid-segment theorem we conclude that ML || A B , LN || A C . Thus 

vectors A M , M C , NL are collinear (because they lie on one or parallel lines), 

equally directed and have the same length, hence, they are equal: AM = MC = NL . 

Similarly, AN = M L , A N 'l l  BN, B N t iM L , C L H bL. Vectors AM  and AN  

form angle a , vectors MC and CL -  angle P . The angle between vectors AM  and 

MC equals to zero, because they are equally directed, and the angle between CL and 

BL equals to n , because they are oppositely directed. ■



8.1.2. Linear Operations on Vectors

A sum of two vectors a and b is a vector OB = a + b (Fig. 8.4, a), which tail

coincides with the tail of vector О A = a , and head -  with the head of vector AB = b 

{triangle rule).

A  product of nonzero vector a and real number X (X ^ 0) is a vector X-a, 

which satisfies the following conditions:

a) the length of vector X ■ a equals to X I • I a , i.e. I Ха I = I X I • I a

b) vectors X ■ a and a are collinear (X-a\\a);

c) vectors X ■ a and a are equally directed, if X > 0 , and oppositely directed, if 

^ < 0  (Fig. 8.4, b).

A  product of a zero vector and any arbitrary number A, is a zero vector (by 

definitions): X-d =o; a product of any vector and zero is also a zero vector:

0 -a = o .

Figure 8.4

A vector { - a ) is called opposite to vector a , if their sum equals to zero vector: 

a + {-a) = o . The opposite vector ( -a )  has length \a \, and is collinear and

oppositely directed to vector a . A  zero vector is opposite to itself. Note that 

(-a ) = (-1)• a .

The difference between vectors a and b is the sum of vector a and vector 

{-b) opposite to vector b : a - b  =a + {-b) (Fig. 8.4, c). In other words, the

difference a -  b of vectors a and b -  is a vector, which sum with b gives vector a 

(Fig. 8.4, d).



Addition and multiplication by number operations are called linear operations 

on vectors.

Vector a is called a linear combination of vectors ax,a2,...,ak, if it can be 

expressed in the following form

a =  a j tf j  +  a  2a2 +... + a  как ,

where щ ,а 2,...,а к -  are some numbers. In this case it is said, that vector a is 

decomposed by vectors ax,a2,...,ak, numbers a, , a 2,.. . ,a /; are called decomposition 

coefficients.

To find a sum of several vectors you should construct a polyline from vectors, 

which are equal to the given ones, by applying the second vector to the first vector 

head, the third vector to the second vector head and so on. Then the locking vector, 

which connects the first vector tail with the last vector head, equals to the sum of all 

vectors of polyline (polyline rule).

Example 8.2. For vectors on Fig. 8.3 find the following sums and differences:

BN + A M ; AM — BL ; AN + A M ; BN + AM + CL. Decompose vector AC by 

vectors BN and BL .

□  Taking into account that AM = N L , by the triangle rule we obtain

BN + AM = m  + NL = BL.

Since BL = -C L  and ~AM = M C , then A M -B L  = MC+ CL = M L.

Since ML - A N , then by the triangle rule AN + AM - AM  + KLL = A L .

Since BN + AM  = BL and CL = -B L , we obtain

Ш + ш  + а  = ( ш  + А м ) + а = Ж - Ж = о .
4---------------------------- '  - B L

BL

Since BA + AC = B C , BA = 2-BN,BC = 2-BL, then AC = -2-B N  + 2-BL. U



8.2. ORTHOGONAL PROJECTIONS OF VECTORS

An orthogonal {direct) projection o f point A to line l is a foot of 

perpendicular At, constructed from point A to line / (Fig. 8.5, a). An orthogonal 

(idirect) projection of point A to plane n is a foot of perpendicular^, constructed 

from point A to plane n (Fig. 8.5, b).

T A

— 3------ 1
A

a

Figure 8.5

An orthogonal projection of vector a = AB to line l is vector al = AlBl , 

which tail is the orthogonal projection Al of points and head is the orthogonal 

projection Bt of points (Fig. 8.6, a -  plane case, Fig. 8.6, b -  space case). An

orthogonal projection of vector a to line / will be denoted by proja.

An orthogonal projection of vector a to axis, formed by vector ё  ф  о  , is its

orthogonal projection to line, which contains vector ё . This projection will be

denoted by proj-a.

An orthogonal projection of vector a = AB to plane n is vector an = AnBn, 

which tail is the orthogonal projection An of point A to plane к and head is the 

orthogonal projection Bn of point В (Fig. 8.6, c). An orthogonal projection of vector

a to plane n will be denoted by projn a .

The difference between vectors a and its orthogonal projection is the 

orthogonal component of vector a relative to line (a±I = an  on Fig. 8.6, a) or

plane (aln on Fig. 8.6, c).



Algebraic value of projection length

Let cp be an angle between nonzero vector a and axis, formed by vector 

ё  ф о , i.e. angle between nonzero vectors a and ё .

The algebraic value of length of vector a orthogonal projection to axis,

formed by vector ё  ф о is the length of its orthogonal projection p ro jjd , taken with 

positive sign if angle cp is not greater than and with negative sign if angle cp is

greater than ^  (Fig. 8.7).

Properties of projection length algebraic values:

• Algebraic value o f projection length o f vector sum equals to the sum of 

summands algebraic values o f orthogonal projection lengths. •

• Algebraic value o f orthogonal projection length o f vector and number 

product equals to the product o f this number and algebraic value o f this vector 

orthogonal projection length.



proj-a = •COS\|/proj-a a -coscp proj-b = proj-b

Example 8.3. Bases AB and CD of equal-sided trapezium ABCD are equal 

to a and b accordingly; point M  is the middle point of BC (Fig. 8.8).

Find algebraic values of orthogonal projection lengths of vectors AM  and MD to 

axis, formed by vector A B .

□  Let DL be trapezium height, N  -intersection point of lines AB и DM .

a — bBy the property of equal-sided trapezium: AL= ; from the equality of

triangles CDM and BNM : BN = CD = b . Denote required algebraic values of 

orthogonal projection lengths by x = proj—A M , у  = proj—M D . From the equalities

AM + MD = AD , AM  -  MD = AM + MN = AN  and Property 1 we have:

proj—^AM + MD) = pro j-A M  + proj—MD = p ro j-A D , i.e. x + y = ;

РЩ-в (ЛМ -  MD) = proj—AM -  proj—MD = proj—A N , i.e. x -  у = a + b .



Solving the system ■] z ’ we obtain
x - y = a + b ,

= 3a + b 
4 i.e.

_ а + ЪЬ 
4

8.3. BASIS AND VECTOR COORDINATES

8.3.1. Basis on Line. Vector Coordinate on Line

A basis on line is any nonlinear vector ё  on this line (Fig. 8.9). This vector ё  

is called basis.

Theorem of vector decomposition on line. Any vector a , which is collinear to 

the line, can be decomposed by basis ё  on this line, i.e. represented in a form 

a = x ■ ё , where number x is uniquely defined.

The coefficient x in decomposition is called vector coordinate a relative to 

basis ё . All nonzero vectors equally directed with vector ё  have positive 

coordinates, and oppositely directed -  negative. A zero vector coordinate equals to 

zero.

Example 8.4. Given vectors d = - 2-ё  and b = 4-ё,  parallel to axes, formed 

by vector ё ф о . Find coordinates of vectors a + b ; -b ; a - b  ; 3 - a + 2 -b relative 

to basis ё , and coordinate of vector a+ b relative to basis b .

□  By the property of collinear vectors we find decompositions by basis ё :

e a = x-e l

Figure 8.9

a + b = -  2-e +4-e = (-2 + 4) • e = 2 • e ;

-b = (-1)• b = (-1 )-4-ё = -  4-ё;  

d - b  = - 2 - ё - 4 - ё  = ( - 2 - 4 ) - ё  = -6 - ё ;

3-а + 2-Ь=3-(-2-ё)  + 2-(4-ё) = [3-(-2) + 2-4]-ё = 2-ё.



Thus a + b = 2 - e = ^ - b .  Note, that vector a +b , relative to basis e , has coordinate

equal to 2, and relative to basis b -  coordinate equal to i.e. vector has unequal 

coordinates relative to different bases. ■

8.3.2. Basis on Plane. Vector Coordinates on Plane

A basis on plane is a system of two noncollinear vectors ёх, ё2 of this plane, 

taken in specific order (Fig. 8.10). These vectors ёх,ё2аг& called basis.

Theorem of vector decomposition on plane. Any vector a o f a plane can be 

decomposed by basis ёх ,ё2 on this plane, i.e. it can be represented in a form 

a = xx -ёх + x2 • ё2, where numbers xx and x2 are uniquely defined.

Coefficients x, and x2 in decomposition are called coordinates of vector a 

relative to basis ёх,ё2 (number is called abscissa and x2 -  ordinate of vector a ), e.g. 

numbers 2 and -3  are coordinates of vector а = 2-ёх-3 -ё 2 (xx = 2 -  abscissa, 

x2 = —3 -  ordinate).

A basis on plane is called right (or an ordered pair of noncollinear vectors is

called right pair), if the shortest turn from the first vector to the second one is

counterclockwise (this direction is assumed as positive). Basis vectors ёх,ё2 (Fig.

8.11, a) of right basis are ordered as thumb and forefinger of right hand (if we look at

palm).
112



A left basis on plane {left pair) is such a basis, that the shortest turn from 

vector ёх to vector ё2 is clockwise (this direction is assumed as negative). Basis 

vectors ёх,ё2 (Fig. 8.11, b) of left basis are ordered as thumb and forefinger of left 

hand (if we look at palm).

О ex О e2 
a b

Figure 8.11

8.3.3. Basis in Space. Vector Coordinates in Space

A basis in space is a system of three noncoplanar vectors ё^ё2,ё3, taken in 

specific order (Fig. 8.13). These vectors ёх,ё2 ,ё3 are called basis.

Figure 8.13

Theorem of vector decomposition in space. Any vector a can be decomposed

numbers xx, x2, x3 are uniquely defined.

Coefficients xx, x2, x, in decomposition are called coordinates of vector a 

relative to basis ёх,ё2,ё3 (number xx is called abscissa, x2 -  ordinate, x 3 -  applicate

by basis ex,e2, e3 in space, i.e. represented in a form a = xx ■ ex + x2 ■ e2 + x3 ■ e3, where



of vector a), e.g. numbers 3, 2, -1 are coordinates of vector а = Ъ-ё1 + 2-ё1- ё 3 

(.Xj = 3 -  abscissa, x2 = 2 -  ordinate, x3= - l  -  applicate).

A basis in space is called right (ordered triplet of noncoplanar vectors is called 

right triplet), if looking from the head of the third vector the shortest turn from the 

first vector to the second one is counterclockwise (Fig. 8.14, a). If the described turn 

is clockwise, then the basis is called left (ordered triplet of noncoplanar vectors is 

called /e/? triplet) (Fig. 8.14, b).

Theorems of vector basis decomposition determine one-to-one correspondence 

between a set of vectors in space and a set of their coordinates in current basis, to be 

exact: between vectors on line and real numbers, between vectors on plane and 

ordered pairs of numbers, between vectors in space and ordered triplets of numbers.

For example, in fixed basis (ё) = (ё1,ё2,ё3) for vector 

а = х1-ё1+х2-ё2+х3-ё3 there is a uniquely specified ordered triplet of numbers 

xl,x2,x3, and vice versa, any for any ordered triplet of numbers x{,x2,x3 there is a 

vector a = xl ■ё1 + x2 - ё2 + x3 - ё3, i.e.

Example: if vector a in basis (ё) = (ё1,ё2,ё3) has decomposition 

а = 2-ё1-3 -ё 2+4-ё3, then this vector corresponds to triplet (2 ,-3 ,4 ) and vice 

versa.

A zero vector in any basis corresponds to a zero triplet (0,0,0).

a b

Figure 8.14

8.3.4. Linear Operations in Coordinate Form



It is convenient to represent vector coordinates as a column-matrix (or row- 

matrix), which are called coordinate columns {coordinate rows).

In basis (ё) = (ej, ё2, ё3) vector а = х1-ё1+х2-'ё2+х3-ё3 corresponds to

coordinate column a
( e )

V х з  J

. Basis notation (e ) can be omitted, if it does not lead to

ambiguity.

Vector linear operations correspond to coordinate columns linear operations, 

e.g. if in basis (ё) vectors a and b correspond to vector columns a and b , then

their linear combination ё  = a  • a  + p • b  corresponds to coordinate column

c  = a  • a + P • b , i.e. c o o r d i n a t e  c o l u m n  o f  vectors ’ linear combination equals to linear 

c o m b i n a t i o n  o f  i t s  c o o r d i n a t e  c o l u m n s .

N o t e : concepts of linear dependence and linear independence of systems of 

columns with all properties transfer to vectors and coordinate columns.

Example 8.5. Vectors a and b relative to basis ё|,ё2,ё3 have coordinates 

2, 0, -3 and 4, 2, -1 accordingly.

Find coordinates of vectors a  +  b  , a  - b  , 3 - a  +  2 - b  relative to the same basis.

□  Write basis decompositions of the given vectors:

a  = 2 • ~ex + 0 • ё2 -  3 • ё3; b  = 4 • ~ёх + 2 • ё2 -1  • ё3 .

Using the properties of linear operations, find basis decomposition of the given 

vectors:

a + b = (2 + 4) • e[ + (0 + 2) • ё2 + (-3 - 1) • ё3 = 6 • ej + 2 • H2 -  4 ■ e3; 

a -  b = (2 -  4) • ex + (0 -  2) • e2 + (-3 + 1) • ё3 = -2  • ё[ -  2 • ё2 -  2 • ё3;

3 - d  + 2 - b  =Ъ-(2 •ё| + 0-ё2-3 -ё 3) + 2-(4-ej + 2■ ё2 -1  • ё3) =

= (3• 2 + 2• 4 )-ёх + (3• 0 + 2• 2 )-ё2 + [3• (-3) + 2 • ( - ! ) ] -ё3 = 1 4 +  4 -ё2 -11 -ё3.

Thus, vectors a+b , a - b , 3-ar + 2-& have coordinates 6, 2, -4 ;  -2 , -2 , -2 ;

14,4, -11 accordingly.



Let’s find obtained coordinates using the matrix notation. Vectors a and b (in 

given basis) corresponds to the following coordinate columns

"2 " f 4 1
a = 0 , b = 2

- b

Find coordinate columns of vectors a + b , a - b , 3 - a  + 2-b:

' 2 " f 4 1 f 6 1 f  2 ) f 4 1
a + b = 0 + 2 = 2 ; a - b  = 0 — 2

~b . 4 - b - b

( 2 ) f 4 1 '  14 ^
0 + 2- 2 = 4

4-3, - b Ч - П ,

-2

З-а + 2 -b = 3-

Results are the same. ■

8.3.5. Orthogonal and Orthonormal Bases

Two vectors are called orthogonal {perpendicular), if the angle between them

is the right angle (value cp equals to y  ).

A system of vectors is called orthogonal, if all forming vectors are pairwise 

orthogonal. A system of vectors if called orthonormal, if it is orthogonal and the 

length of each vector equals to unit.

Standard basis on line, plane and in space

Bases on line, plane and in space are not uniquely defined. Some of them, 

which are more convenient to use, are accepted as standard.

Standard basis on line is unit vector / on the given line (Fig. 8.15, a). Any

vector a , which is collinear to the given line, can be decomposed by the standard 

basis on line {e = i ), i.e. represented in form a = x - i .



Figure 8.15

A standard basis on plane is an ordered pair of unit and perpendicular vectors 

T j  on the given plane (Fig. 8.15, b). Any vector a on the given plane can be

decomposed by the standard basis on plane (ё| = / , ~ё2 = j  ), /.e. represented in a 

form a = x - i + у ■ j  .

A standard basis in space is an ordered triplet of unit and pairwise 

perpendicular vectors i , j , k  (Fig. 8.15, c). The first basis vector i in Fig. 8.15, c 

is directed perpendicularly to the figure’s plane (towards the reader). Any vector a in 

space can be decomposed by standard bases in space (Щ = i , ~e2 = j , ~ёъ =k ), i.e.

represented in form a = x - i + у ■j  + z -k  .

Standard bases on plane and in space are orthonormal right bases.

In standard basis length of vector equals to square root of its component sum:

| a | = ypd  (on line);

\d\ = yjx2 + y 2 (onplane);

| a | = y]x2 + y 2 + z2 (in space).



Direction Cosines

In standard bases on plane and in space it is convenient to describe the 

direction of nonzero vector a by the angles between the vector and basis vectors: a  

-  the angle between a and the first basis vector z ; (3 -  the angle between a and the 

second basis vector j  (Fig. 8.15, b); у -  the angle between a and the third basis

vector к (Fig. 8.15, c). It is sufficient to take into account angles cosines, which are

called direction cosines of vector a (in standard basis).

Coordinates of unit vector ё , equally directed with vector a on plane, are

equal to direction cosines of vector a :

~ d -  „ -e = = cosa • i + cosp• j  ,
Ia  I

i.e. x = cosa, у  = cos(3. Values of direction cosines satisfy the following condition: 

cos2 a  + cos2 P = 1.

Coordinates of unit vector ё , equally directed with vector a in space, are 

equal to direction cosines of vector a :

e = = cosa • i + cosp • j  + cosy • к ,
Ia I

i.e. x = cosa, y = cosP, z = cosy and cos2a  + cos2p + cos2y = l.

Example 8.6. Find lengths and direction cosines of vectors a=3- i  - у /b- j  

and b = i -  2 • j  + 2 • к .

□  Vector a = 3- i - \ / з  ■ j  is defined relative to standard basis i , j  on plane.

By coordinates x = 3, y  = -y j3 of vector d  find its length by the formula

(8.1): \ a\  = yj32 + (—>/з)2 =2>/3.
Dividing vector a by its length we find the unit vector, equally directed with

_ d  3 — >/з — >/з — 1 —vector a : —r = — 1= ■ i ----- j= • / = -----i ------/ .
\d\ 2y[3 2л/3 2 2



-ч/зAccording to (8.3), its coordinates are direction cosines cosa = ̂ - ;  

cosP = --L . So, vector a forms the following angles with basis vectors i and j  : 

a  = -jr and P = .

Vector b = i -  2 - j  + 2 -к is defined relative to standard basis i , j , k  in

space.

By coordinates x = 1, у = -  2, z = 2 of vector b find its length by the formula 

(8.2): |/T| = ^/l2 + (-2 )2 + 22 =3.

Dividing vector b by its length we find the unit vector, equally directed with

+ 7- b 1 ^  2 ^  2 rvector b : • i -----/ + - - k  .
3 3 3

According to (8.4), its coordinates are direction cosines: cosa = 1 ; cosP = 2 .
3 5

cosy =_ 2
3 '

8.4. SCALAR PRODUCT OF VECTORS

A scalar product of two nonzero vectors is a number, equal to the product of 

their lengths and cosine of angle between them. If at least one vector is zero, then the 

angle between them is not defined, and product is assumed to be equal to zero. Scalar 

product of vectors a and b is denoted by

(a,b) a coscp. (8.5)

where cp is a value of the angle between a and b (Fig. 8.2 in section 8.1.1). 

A scalar product {a,a) = \a\ is called scalar square.

A scalar product o f two nonzero vectors a and b equals to the product o f 

vector b length and algebraic value o f orthogonal projection o f vector a to axis, 

formed by vector b (Fig. 8.16):

(a,b) ■ P row ( 8 .6 )



Figure 8.16

This formula remains correct if a = d  , because proj^o = 0 .

In other words, a scalar product o f nonzero vectors a and b equals to the 

product o f vector a length and algebraic value o f orthogonal projection length of 

vector b to axis, formed by vector a :

{d,b) = \d[proj-b  .

Example 8.7. Find scalar products (a ,b ), (b ,a ), (a ,c ), (b ,c ), (a ,d ),

(,b ,d ), (c ,d ), if it is known, that I a I = 1. = 2, c =4 d = 1, angle cp between

vectors a and b equals to -j, c t i b  , and vector d forms angle with vector a

equal to 5 = -^- (Fig. 8.17).6

Figure 8.17

By the definitions find (a,b) = \a

(b,a) \a |-coscp = 2 -l-cos-j = 1. Since vectors b

directed, then angle i|/ between vectors a and

(a,c) = | a | • | c | • cosv\f = 1 • 4 • cos^- = -2 .

coscp = l-2-cos^ = l;

and c are oppositely 

c equals to ? so



Angle between oppositely directed vectors b and c equals to n,  so

(b,c) = ■\ c  • C O S 7 r  =  2 - 4 - C O S 7 l  =  - 8 .

Vector d  is orthogonal to vector b (and vector c ), because value of angle

between them equals to = ̂  an<̂  COS2 ' = 0, so (b ,d) = (c ,d) = 0

Angle between vectors a and d equals to so

(a,d) = 1 • 1 • cos-̂ P- = ~^2 ~ ■

Algebraic Properties of Scalar Product

For any vectors a , b , c  and any real number X:

1. (d,b) = (b,d);

2. (a + b,c) = (d,c) + (b,c);

3. (X-a,b) = X-(d,b);

4. (a,a)> 0, and from the equality (a,a) = 0 follows that a = o .

Geometric Properties of Scalar Product

1. Length of vectors is calculated by formula | a \ = yj{a,a).

2. Value of angle cp between two nonzero vectors is calculated by formula:

( d , b )( a , b )  
C0S(P = n ra yl(a,a)-^J(b,b)

3. Algebraic value of orthogonal projection length of vector a to axis, formed

1 т — . — (a, b) (d,b)by vector b фо : р щ ъ a = • -
V ( M ) '

4. Orthogonal projection of vector a to axis, formed by vector Ъ ф о \

■= -rprojFa = — — • b . If axis is formed by unit vector e , then proj- a = (a, e)- e .
(P 5 Ь )



Scalar Product in Orthonormal Basis

In orthonormal basis a scalar product of vectors equals to the sum of the 

products of its corresponding elements:

1) if vectors a and b relative to orthonormal basis on plane have coordinates 

xa, ya and xb,yb accordingly, then the scalar product of these vectors is calculated by 

the formula

(a,b) = xa-xb + ya-yb; (8.7)

2) if vectors a and b relative to orthonormal basis in space have coordinates 

X a ,у a,z a and Xb , y b, z b accordingly, then the scalar product of these vectors is

calculated by the formula

(a,b) = xa-xb + ya-yb + za-zb. (8.8)

Coordinates of vector a in orthonormal bases equal to scalar products of this 

vector and according basis vectors:

xa=(a,T), ya = (a, j ) ,  za=(a,k).

Example 8.8. Given vectors a = i -  2 - j  + 2 -к,  b = 2- i +3-j  +2-k , 

c = j  - k  , find scalar products (a , b ), (a,c), (&,c), (a , i ), (a , j ), (a , к ), lengths 

of vectors \a\,  b , |c |, angles cp_F , c p ^  between vectors a and b , a and c

accordingly, and projection proj-a and algebraic value proj-a of the projection 

length.

□  By the geometric Properties 1 - 4  and (8.8), obtain:

(a , b ) = (1 • / -  2 • j  + 2 • к , 2 • i + 3 • j  + 2 • к ) = 1 • 2 + (-2) • 3 + 2 • 2 = 0;

( a , c )  = ( l T - 2 - 7  + 2 - M T  + l - 7 - l - j F )  = l - 0  + ( - 2 ) - l  + 2 - ( - l )  = - 4 ;

(b,c) = {2- i + 3• j  + 2-к ,0- i + h j - l - k ) =  2 -0 + 3-1 + 2•(-!) = ! ;

= i -  2 • j  + 2 • к , 1 • i + 0 • j  + 0 • к ) = 1 • 1 + (-2) • 0 + 2 • 0 = 1; 

{ a ,  7 )  = ( l - i ~ - 2 - 7  + 2-&, 0 - Г  + 1- 7  + 0-&) = 1- 0 + ( -2 )  • 1 + 2 • 0 = - 2 ;  

( a , k )  =  ( \ - T  - 2 - J  +  2 - k , 0 - T  +  0 - J  +  \ - k )  =  \ - 0  +  ( -2 )  • 0 + 2 • 1 = 2 ;



а V ( ^ 5 ) = V l 2 + (-2)2 + 22 =3; b = J(b,b)  = j 2 2 + 32 + 22 = J l 7 ;

c |  = V(? .? ) = V°2+ l2 + t - l ) 2 = V 2 ;

(«,*) ЛCOSCP-7- = 1----=  U
^ ab \ a \ b

Jl _ —
%ь = (vectors a and b are orthogonal);

cos 9 ^ = 7 3 ^  =
(a,c) _ ~4 _ 2 > / 2  

a\\'c\ 3-V2 3
cp__ = arccos ly jl

V 3 У

proj-cjca = ^ r  = ̂ j= = - 2J2  ; Pr° jc a = 7 = ^ ,c = _ T' (2  - k )  = - 2 j  +2k(P,c)

8.5. OUTER PRODUCT OF VECTORS

A vector c is called an outer product o f noncollinear vectors a and b , if:

1 ) its length is equal to the product of vectors a and b lengths and sine of 

angle between them: \c\=\a\■ \b \-sincp (Fig. 8.18);

2 ) vector c is orthogonal to vectors a and b ;

3) vectors a ,b ,c (in the given order) are right triplet.

Figure 8.18

An outer product of collinear vectors (in particular, if at least one of them is 

zero vector) equals to zero vector. The outer product is denoted as c = [a, b ] (or

a x b ) .



Algebraic Properties of Outer Product

For any vectors a , b , c and any real number X:

1. [a,b] = -[b,a];

2. [a + b , c] = [a, c] + [b, c ] ;
3. [k-a,b\  = X [a,b\.

Geometric Properties of Outer Product

1. The absolute value of vectors’ outer product numerically equals to the area 

of a parallelogram, constructed on these vectors (Fig. 8.18, b).

2. An outer product equals to zero vector if and only if the vectors are 

collinear, i.e. [a,b] = o <̂ > a || b , in particular [a,a] = о .

Outer Product of Vectors in Orthonormal Basis

Consider right orthonormal (standard) basis in space / , j  ,k (sect. 8.3.5). 

Outer products of basis vectors are found by the definition:

[T, J] = k ;  [J,k] = T; [k,T] = J ; [JJ ]  = - k ;  [F ,J] = - 7 ;  [T, k] = - j ;

V J ]  = [ j , j ]  = [k,k] = o .

Outer product calculation formula. If vectors a and b in right orthonormal 

basis i , j , k  have coordinates xa,ya,za and xb,yb,zb accordingly, then the outer 

product of these vectors is calculated by the formula

[a,b] = i
i 7 к

— У а Z a — X a  Z a У  ai • ~j ■ + к • — X a У а Z a
У ь Z b X b Z b Х ь  У ь

X b У ь Z b

(8.9)

Example 8.9. Parallelogram ABCD is constructed on vectors 

AB = i +2 ■ j  + 2 • к , AD = 3-i -  2 ■ j  + к (Fig. 8.19). Find:



Figure 8.19

a) outer products [AB, AD] and [AC, BD];

b) area of parallelogram ABCD;

c) direction cosines of vector n , perpendicular to the plane, which contains

ABCD, and that form the left triplet AB , AD ,n .

□  a) Outer product [AB, AD] is calculated by the formula (8.9):

[AB, AD] =
i j к

2 2 1 2 1 2
1 2 2 = i •

-2 1 ~ j  • 3 1
+ к ■

3 -2
3 -2 1

6 - i + 5 • j  -  8 • к .

Outer product [AC, BD] is determined by the algebraic properties:

[AC, BD] = [AB + AD, AD -  AB] = [AB,AD] -  [AB,AB] + [AD, AD] -  [AD,AB] =
- [A B ,  A D \

= [AB, AD] + [AB, AD] = 2 ■ [AB, AD] .

Consequently, [AC, BD] = 2 - ( б Т  + 5- 7-8-fc)  = 12-T + 10-J-16-fc.  

b) Area of parallelogram ABCD is found as an absolute value of product

[AB, AD] :

S#=\[AB,AD]\ = \6-i + 5- j - S - k \  = yj62 + 52 + (-S)2 =5>/5.

c) Vector, that is oppositely directed with vector [AB, AD], satisfies 

enumerated conditions, thus

n = ~[AB, AD] = - ( б -i +5- j  -  S-k^ = ~6- i - 5 - j  +S-k .



vector: n -6 - i - 5 ■ j  + 8 -к
\n 5>/5

its coordinates are direction cosines: cos a

.sT T  W J ' W r - Accord,ng t0 (84)’

— 6  _ 1  о
cosP = —-A, cosy = ■

5y/5 5>/5

8.6. COMPOSITIONAL PRODUCT OF VECTORS

A compositional product o f vectors a ,b ,c is a number (a,[b,c]), equal

to the scalar product of vector a and the outer product of vectors b и c . 

A compositional product is denoted by (a, b,c) .

Geometric Properties of Compositional Product

1. The absolute value of compositional product of noncoplanar vectors a,  

b , c equals to the volume F#_ ъ _ of a parallelepiped, constructed on these

vectors. A product (a,b,c)  is positive, if vector triplet a ,b ,c is right, and 

negative, if vector triplet a ,b ,c is left.

2. A compositional product (a , b , c ) equals to zero if and only if vectors 

a,b ,c are coplanar, i.e.:

(a,b,cr) = Q vectors a ,b ,c are coplanar.

Algebraic Properties of Compositional Product

1. A swap of two multipliers in compositional product changes the sign to the 

opposite one:

(a,b,c) = - (b,a,c) ,  (a,b,c)  = - ( c , b , a ), (a,b,c)  = - (a ,c ,b );

a cycle (round) swap of multipliers does not change the product:

(a, b ,c ) = (b,c,a) = (c ,a ,b) .

2. A compositional product is linear by any multiplier.



Compositional Product of Vectors in Orthonormal Basis

Compositional product calculation formula. If vectors a ,b ,c in right 

orthonormal basis i , j  ,k have coordinates xa,ya,za; xb,yb,zb; xc,yc,zc 

accordingly, then the compositional product of these vectors can be calculated by the 

formula

(a,b,c)  =
Xa Уа Za

Xb Уь Zb

Xc Ус Zc

( 8 .10)

Example 8.10. ParallelepipedA B C D A ^C ^  is constructed on vectors

AB = i + 2- j  + 2 - k ; AD = 3 ■ /' -  2 • j  +k  ; AA x=2 ■ i -1  • j  + 3 • к (Fig. 8.20). Find:

Figure 8.20

a) compositional product {AB, AD, AA^;

b) orientation of triplet AB , A D , AA1;

c) volume of parallelepiped ABCDA^C^ ;

d) volume of triangular pyramid A BDA];

e) height h of the parallelepiped (distance between planes of bases ABCD 

and AJÂ CyDy).

□  a) Compositional product(AS, AD, AAX) is found by formula (8.10):



(AB, AD,AAl) = = -17.
1 2 2
3 -2 1 
2 - 1 3

b) Since the product is negative, then the triplet AB , A D , AAX is left (by the 

first geometric property of compositional product).

c) Volume V# of parallelepiped A B C D A ^C ^  equals to the absolute value of 

the compositional product (by the first geometric property of compositional product):

K = (AB,AD,AA,) | = | -17 |  = 17.

d) Volume V of triangular pyramid ABDA1 equals to one sixth of 

parallelepiped’s volume V#. Indeed, their heights are equal, and area Sbase of pyramid 

base equals to half of parallelogram ABCD area S#. So

v = \ - s ^ - h = \ - \ - s , - h = \ - v ,

v - \ - v- = xi -

and V* = (AB, AD, AAX) | = 17 and then

e) Height h of the parallelepiped is obtained by formula h = ̂ r ,  where S# is

the area of parallelogram ABCD . Since V# =17 and S# = 5^5 (example 8.11), then

h =
5 j 5 '  "

8.7. METRIC APPLICATIONS OF VECTOR PRODUCTS

It is assumed that coordinates of vectors a  ,b , c , which are given in formulas, 

are found relative to standard basis i , j  ,k in space:

a = x a - T  +  y a - j  + z a - k ,  

b  = x b - T  +  y b - J  +  z b - k , 

c = x c - T  +  y c - J  +  z c - k .

Remember, that in standard basis scalar, outer and compositional products of 

vectors are calculated by formulas (8.8)—(8.10):



[a,b ] =

(a,b,c)

i 1 к

У а Z a

*b У ь Z b

X a У а Z a

X b У ь Z b

Xc У с z c

1. A vector a = о if and only if

(a,a) =  0 о  x 2a + y 2a +  z2a = 0 <^> xa = ya = za = 0.

2. Nonzero vectors a and b are orthogonal if and only if

(a ,b ) = 0 <» xa-xb + ya-yb + za-zb= 0.

3. Vectors a and b are collinear if and only if

[a,b] = o <̂>
i 7 к

X a Т а Z a

X b Уь Z b

= о

Vectors a , b , c are coplanar if and only if

*a У a Z a

Х Ъ У ъ  Z b

X у z
C S c  c

5. The length of a vector а  ф  о  is calculated by formula

(a ,b ,c ) = 0 0.

^1 = ^ , ^ )  = /̂ x2a+ y2a + z2a .

6. The angle ф between two nonzero vectors a and b is calculated by 

formula



coscp = ( a , b ) Xa - Xh + y a - y b + Z a - Zb

y / ( a , a ) - y j ( b , b )  J X?, + Уl  + A  • 4  4  +  y l  + zt2

7. The algebraic value of the orthogonal projection of vector a  on axis, 

formed by vector b ф о  , is calculated by formula

TT_ ( a , b )  _ x a -xb + y a - y h + z a - z b
РЩь a =

V xb + y l  + z b

8. The orthogonal projection of vector a  on axis, formed by vector b ф о  :

£ _ x a -xb + y a - y b + z a - z b 

( M )  x 2b + y 2b + z 2b
P ™ j ba  =  =  ~ a ^ ' 2  ' J a ' 6 ' ( v *  +yb- j +zb-k )-

9. Direction cosines of vector a  are found by formulas

cos a  = {a ,  i )

a 4 2 2 2x t+ y t+  zCl • 'C l  Cl

( a , k )cosy = — =
a

cosp = % Л  = . У a
M  4

2 2 2*п+Уп+ Zci ci ci

V X a + yl + Z a

10. A unit vector e , equally directed with vector a , is found by formula

-  a  -r D re =7^77= г -cosa + j  -cosp + к  -cosy.

11. Area S#- j  of a parallelogram, constructed on vectors a and b , is 

calculated by formula: S#- F = | [a, b] | . Area SABC of triangle ABC equals to one half 

of area S#- ^ ~  of a parallelogram, constructed on vectors AB and AC, i.e.

_ 1 ___
2  ^ U A B ,A C '

SABC= ± - S ^ - ^ .

12. Volume of a parallelepiped, constructed on vectors a  , b  , c , is

calculated by formula V#_F_ = \(a ,b ,c ) \ . Volume VABCD of triangular 

pyramid ABCD equals to one sixth of volume of a parallelepiped,

constructed on vectors AB , A C . A D , i.e. VABCD = 1  ■ F -  _  _ .



13. A triplet of noncoplanar vectors a ,b ,c is right (left) if and only if 

{a,b,c)>  0 {{a,b,c)<  0).

14. The height h of a parallelogram, constructed on vectors a ,b , is 

calculated by formula (Fig. 8.18, b)

h = #a,b

\ a \

[ a , b ]

15. The height h of a parallelepiped, constructed on vectors a ,b , c , is 

calculated by formula

h =
K -K.#a,b ,c

S#J..#b,c

| (a ,b ,c )

16. The angle v|/ between vector a and a plane, containing vectors b and c , 

completes the angle cp between vector a and vector n=[b,c] (which is 

perpendicular to the plane (Fig. 8.21, a)) to the right angle, and is calculated by 

formula

i i |(a ’* ’c )| 
s m i | /  = |cos(p| - - J---------- 1

17. The angle 8 between plane, containing vectors a,band c’,d  

accordingly, is calculated as the angle between vectors m = [a, b ], n = [c,d] , that are 

perpendicular to the given planes (Fig. 8.21, b) by formula

cos 8 =
( [a,b], [c,d] )

[a,b] • [c,d]



Given properties 1-3, 5-11, 14 are also applied to vectors on plane, assuming 

their applicates equal to zero.

Example 8.11. Triangle OAB is constructed on vectors OA = 4-i + 3 - j  and 

OB = \2 -T -5 -J  (Fig. 8.22). Find:

a) lengths of sides of the triangle;

b) value of angle АО В ;

c) area of the triangle;

d) coordinates of vector BH (in standard basis), where BH is the height of 

the triangle.

Figure 8.22

□  a) Lengths of sides О A and OB are found by the Property 5:

OA = ^(OA,OA) =л/42 +32 =5; OB = J(OB, OB) = y jll2 + (-5)2 = 13.

To find the length of side A B ,  obtain coordinates of vector 

A B  = O B  -  OA = 12-i -  5 • j  -  {A - i + 3 • j  ) = 8 • i -  8 • j  , and then its length:

А в \  =  ^ ( А В , А В ) = ^ % 2 + ( - $ ) 2 =  b j l .  

b) Value cp of angle A O B  find by Property 6:

(OA, OB)
c o s c p  =  —r—

4*12 + 3- (—5) _ 33 
_ - 65yl(OA,OA)-yl(OB,OB) 5-13

Consequently, cp = arccos^-.
6 5

c) Area S of triangle OAB equals to one half of area of a parallelogram,

constructed on vectors OA and OB: S = 2 ^#шов (ProPerty П). To find area of the



parallelogram, add zero applicate to vectors OA and OB, i.e. О A = 4 • i + 3 • j  + 0-k ; 

OB = 12 • i -  5 • j  + 0-к , and calculate their outer product:

[OA, OB\
i j к

3 0 4 0 4 3
4 3 0 = i ■

-5 0 - j - 12 0
+ k ■

12 -5
12 -5 0

■ 0-i - 0 • j  +(-56)•к

Then S#OA OB [ OA, OB ] = 0 - / + 0 -y+ (-56 )-£  =yj02 +02+ (-5 6 f =56.

So, triangle area S = ^  • 56 = 28.

d) Find vector BH = OH -O B . Projection OH of vector OS on axis, formed 

by vector О A , we obtain by Property 8:

—  (OB,OA) —  12-4 + (-5)-3
(OA, OA)

■ ̂  . 132 ^  99 ^
— •(4- г +3- / ) = ----- i +-----/ .

25 v 7 25 25

From this BH = 132 т  ,99  т
25 l +§.7-(l2.7-5.7) = -T\__168 t  , 224 7

25 1 + ̂ 25  ̂  ̂ ' Consequently, its

coordinates are -  . Find the length of this vector, i.e. triangle height:

]j +{^25~) =^5~' ^ ° te ^iat tr ângle area S = 28, so the height canBH

2 1 s  2  • 28 56
be calculated by formula BH = -----= -------= — . The results are the same. ■

OA 5 5

Example 8.12. Triangular pyramid OABC is constructed on vectors

OA = 1 ■ i + 3 • j  -1  • к , OB = 2 ■ i +1 • j  -  2 ■ к , ОС = 3 • i -  2 • j  + 4 ■ к (Fig. 8.23).



a) lengths of edges CM, OB, O C ;

b) value cp of angle AOC ;

c) area S0AC of triangle C M C ;

d) volume of pyramid OABC ;

e) height hB of pyramid, dropped from vertex В ;

f) height ha of triangle C M C , dropped from vertex A ;

g) angle v|/ between edge CM and the plane of side OBC;

h) value 5 between planes of sides CMC and OBC;

i) direction cosines of vector OB;

j) algebraic value of orthogonal projection of vector CM on the direction of 

vectorCfi;

k) orthogonal projection of vector CM on line, which is perpendicular to side

OBC-

l) unit vector ~ё (ort), equally directed with vector A B ;

m) vector a with the length equal to the length of vector AB and equally 

directed with vector AC .

□  a) Lengths of edges CM ,OB and OC are calculated by Property 5:

OA

OB

= 4(0A, OA) = Vl2 + 32 + (-1)2 = V n ; 

= л1(ОВ,OB) = tJ 22 + 12 + (-2)2 =3;

OC = J(OC,OC) = 4  32 + (-2)2 + 42 =V29.

b) Value cp of angle AOC is found as the angle between vectors CM and OC 

by Property 6:

(OA, ОС) 1 • 3 + 3 • (-2) + (-1) • 4 7coscp =
OA OC л/П-л/29 л/319

i.e. cp = 7t — arccos



c) First we calculate area of parallelogram, constructed on vectors OA and OC 

by Property 11. To do this we find outer product

[OA,OC] =

and then its absolute value: S ^ - — =#OA,OL

j к
3 -1

-2 4
= 10-i - 7 - j - l l - k  ,

[0 4 ,ОС] =^Ю 2 + (-7)2 + (-11)2 =V270 .

Required area of the triangle equals to one half of the previously obtained area: 

I  e У270C _ _L. V___ =
° O A C  2 #O A ,O C  2

d) By Property 12 find the volume К#OA,OB,OC of the parallelepiped,

constructed on vectors OA, OB, OC :

0OA,OB,OC) =
1 3 -1
2 1 -2
3 - 2  4

K tO A ,O B ,O C
(OA, OB,OC ) 

Required pyramid volume is six times smaller: Vc

-35

= -35  =35.

35
OABC ~  £  #Ш ,ОВ,О С ~  (y ■

e) Height hB of pyramid is found by Property 15:

V --------^ _  #OA, OB,OC _  ЭЭ

$,ш,ос ~ V270

f) Height ha of triangle О A C , dropped from vertex A is found by Property 14:

h = ^ iioa/x: _ л/270 
”  ^29o c

g) At first we obtain vector n , which is perpendicular to side OBC:

n=[OB,OC] =
1 j  к
2 1 -2
3 - 2  4

= 0-/ -14- j  - 1  - к .



Then we calculate angle v|/ between vector OA and the plane of side OBC by the 

Property 16:

Sin V(7 =
(0 0 ,0 5 ,0 0 ) (Ш ,й)

OO -| [05 ,00] О A | • | n

|l-0  + 3-(-14) + ( - l) - ( -7 ) | 35 = V5

y/U-yj(-U)2 + ( - 7 ) 2 yJU-7-45  л/ГГ

• V5i.e. \\i = arcsin v
л/ГГ

h) Find vector m , which is perpendicular to the plane of side О A C :

T  J  к

1 3 -1
3 - 2  4

m = [OA,oc] = TOO -7 •  j  - l l - к .

Vector n , which is perpendicular to side OBC, was found in "g". Required angle S 

is calculated by Property 17:

cos 8 =
q p A ,o c \,[O B ,o c ]) (m,n)
[00 ,00] [0 5 ,DC] m [\n

10 ■ 0 + ( -7 ) .( - l4 )  + ( - l l ) . ( - 7)| 5

^  102 + (-7)2 + ( - l l ) 2 - 7-V5 З'/б

i.e. 8 = arccos—Д=.
Зл/б

i) Direction cosines of vector OB are calculated by Property 9:

(O BJ) 2 - l  + l - 0  + ( - 2 ) - 0  2cos a  = ------- - --------------- v 7----- •

cosP =

OB

(O BJ) 1

22 + l2 + (-2)2 3 ’

0 5
= cosy = (O BJ) -2

0 5



Note, that cos2 a  + cos2 p + cos2 у = + (42 ' 2 \2_
+ ' - f  = 1 '

j) Algebraic value proj— OA of projection length is found by Property 7

(a = OA, b =OB):

pr0j m OA =
—  (OA.OB) l-2 + 3-l + ( - l) - ( -2 )  7

OB

k) Required orthogonal projection proj- О A is obtained by Property 8 

(a = OA, b = n), using vector n , which was found in "g":

• (0 ■ t" + (-14) • 7 + (—7) ■ Г) =-----: -ТГ- (OA, JT) _  1 ■ 0 + 3 • (-14) + (-1) • (-7)proj-OA = -— ■ n = -------—  ---- — -
(n,n) О2 + (-14)2 + (—7)2

= 2 -J  + k .

1) Obtain coordinates of vector AB and its length:

A B  = № - m  = ( 2 - T  + \ - j - 2 - k ) - ( \ - T  + 3 - j - \ - k )  = \ - T  + 4 - j - \ - k ;

AB | = ^ + 4 2 + ( - i ) 2 =Зл/2 ,

and then the required vector ё  = -==- = —i =  • J  + —4= ■ 1 --- \=  • к .
‘ “ Зл/2 3V2 3V2AB

m) Find coordinates of vector AC and its length:

AC = O C-O A = (3-i -  2 - j  + 4 -k ) - ( \ - i  + 3 - j - \ - k )  = 2-i -  5 -j +5-k

= ^ 2 2 + (-5 )2 + 52 = з 7 б ,AC

and then the required vector

a =
AB

AC s/3 ё  J ё



EXERCISES

1. Consider vectors a = 2 ■ i -  n • j  ; b = m- i + 3 • j  . Decompose vector i by 

vectors a and b . Find:

a) coordinates of vector с = 2-а-Ъ -Ь  in standard basis;

b) length and direction cosines of vector c .

2. Consider vectors a = n- i -  j  + m -k ; b = 2 - i + m - j + k ;  c =4 - 1 + 

+n- j  -3 -k  . Decompose vector i by vectors a ,b ,c . Find:

a) coordinates of vector d = a + 2-b -Ъ -с  in standard basis;

b) length and direction cosines of vector d .

3. Consider vectors a = 2 • i -  n ■ j  ; b = m- i + 3 • j  . Decompose vector / 

by vectors a and b . Find:

a ) products (a ,b ), (a,a), (b ,b );

b) orthogonal projections proj ъ a , proj-a  of vector a ;

c) algebraic values proj Fa and proj -b of orthogonal projection lengths;

d) angle cp between vectors a and b ;

e) area of parallelogram S#- ъ, which is built on vectors a and b .

4. Consider vectors a = n - i - j + m - k ;  b = 2 - i + m - j + k ;  c = 4 •/ + 

+n- j  -  3-k . Decompose vector i by vectors a ,b ,c . Find:

a) products (d ,b ), [a,b], (a,b ,c), determine orientation of the triplet a ,b jc ;

b) orthogonal projections proj ъ d , proj-a  of vector a;

c) algebraic values proj ъа and proj -b of orthogonal projection lengths;

d) angle cp between vectors a and b ;

e) angle vp between vector a and plane, which contains vectors b and c ;

f) area of parallelogram which is built on vectors d  and b ;

g) volume of parallelepiped which is built on vectors a ,b jc .



CHAPTER 9. COORDINATE SYSTEMS

9.1. CARTESIAN COORDINATE SYSTEMS

9.1.1. Cartesian Coordinates of Vectors and Points

Let О be a fixed point in space. An set of point О and a basis is called an 

affine coordinate system and point О is called its origin. Lines passing through the 

origin in the direction of basis vectors are called coordinate axes.

For any point A in a given affine coordinate system we can consider vector

О A , its tail being the origin and head -  point A (Fig. 9.1-9.3). This vector is called 

a position or radius vector of point A .

An affine coordinate system is called Cartesian (irectangular) if its basis is 

orthonormal (see Section 8.3.5).

The coordinates of a vector in a Cartesian coordinate system are the 

coefficients of its decomposition by standard basis (see Section 8.3.5).

The coordinates of a point A in a Cartesian coordinate system are the

coordinates of its position vector OA in standard basis. In space these are 

coefficients x , y , z  of decomposition OA = x- i  + y - j  +z - k  , on plane -  

coefficients x , y  of decomposition OA = x • i + у  ■ j , on line -  coefficient x of 

decomposition OA = x - i .  Denotations A(x,y,z), A(x,y), A(x) are used,

respectively. Cartesian coordinates of a point (or its position vector) can be 

represented by a coordinate column:

f x )
( X )У in space,

Choosing standards bases (see Section 8.3.5), we obtain:

Oi -  Cartesian coordinate system on a line -  is represented by point О and 

unit vector i on a line. Points О and A (Fig. 9.1) on axis Ox are denoted by 0(0) 

and -4(1);



О А
—|----------- 1------------ ------------------------1-------

- 2  - 1  0  7  1 2  х

Figure 9.1

OTJ -  Cartesian coordinate system on a plane -  is represented by point О 

and two mutually perpendicular unit vectors i and j  on a plane (vector i is the 

first basis vector and j  is the second one; i , j  is the right pair of vectors). Axes 

Ox (abscissa) and Oy (ordinate) divide the plane into 4 parts, called quadrants (Fig. 

9.2), e.g. point A{\, l) belongs to the I quadrant;

Coordinates of vectors and points in a Cartesian coordinate system are called 

Cartesian coordinates.

O T J  к -  Cartesian coordinate system in space -  is represented by point О 

and three pairwise perpendicular unit vectors i , j  ,k  (vector i is the first basis 

vector, j  is the second and к is the third one; / , j , к is the right triplet of vectors). 

Axes are denoted by Ox -  abscissa, Oy -  ordinate, Oz -  applicate.

Coordinate planes Oxy, Oxz, Oyz, passing through pairs of axes, divide space 

into 8 octants (Fig. 9.3), e.g. point A( 1,2,2) belongs to the I octant.

Cartesian coordinate systems can also be denoted by the origin and the axes, 

e.g. Ox , Oxy, Oxyz .



To find the coordinates o f a vector AB with the tail in the point A (xA, yA, zA) 

and the head in the point B (xB, yB, zB), we should subtract the coordinates o f its tail 

from the corresponding coordinates o f its head:

AB = {xb -  xa )■ i +( yB -  yA )' j  +( zb -  za ) 'k •

This rule also holds for Cartesian coordinate systems on a plane and on a line.

Coordinates o f a point M that divides a segment AB in the ratio o f = A
MB a

(a > 0 ,  p>0), are found by the coordinates o f its endpoints A (xA,yA,zA) and 

B (xB, yB, zB) (see Section 2.1.1):

M f a^ xA +p ■ xb ; a ■ yA +P- Ув . a^zA + p ■ zb Л
a  + P a  + P a  + P

(9.1)

In particular: 

point M fx A  + xB . y A  + Ув . zA  + z B ^ is the midpoint of a segment A B ;



point M r xA + xB + xc ; yA + yB + yc ; zA + zB + zc ^is the intersection point of
3 3 3 ,

triangle ABC 's medians .

Similar formulas are true for coordinates of points on a plane and on a line.

In a Cartesian coordinate system the distance AB between points A (xA, yA, zA)

and B (xB, yB, zB) is obtained by the formula

AB = yj(xB -  xA )2 +(yB -  yA )2 +(zB -  zA )

For the coordinate plane and the coordinate line, respectively:

(9.2)

AB = \j(xB -  xA )2 +(yB -  yA )2 AB = xB -  xA

If Cartesian coordinates of vertexes A (xA, yA), B (xB, yB), C (xC, yC) of 

triangle ABC on a plane are given, its area is calculated by the formula

e =°ABC ~ s ABC , where

S л   1
SABC = 2  '

xA yA 1
xB yB 1
xC yC 1

(9.3)

If Cartesian coordinates of vertexes A (xA, yA, zA), B(xB, yB, zB), 

C (xC, yC, zC), D (xD, yD, zD) of triangular pyramid ABCD are given, its volume is

calculated by the formula ABCD V лABCD where

V лv ABCD

x

xB yB
xc yC

A yA
B 
C

A

xD  yD  *

1

z B  1

1

1

C
D

(9.4)

Example 9.1. Given Cartesian coordinates of vertexes A (1,1), B (4,5), 

C (13,6) of the triangle ABC (see Figure 9.4), find



a) the length of the median A M ;

b) the length of the angle bisector AL ;

c) the height ha dropped from the vertex A .

Figure 9.4

□  a) By formula (9.1) calculate the coordinates of the point M -  the midpoint of the 

side B C : i.e. Using a special case of formula (9.2) for a

plane, compute the length of the median:

b) Calculate the coordinates of the point L that divides the side BC in the ratio 

BL\LC = AB:AC  (the angle bisector theorem). Since AB - ^(4 - 1)2 + (5 - 1)2 =5

and AC - 7(13 - 1)2 + (6 - 1)2 =13, by formula (9.1), taking into account that

BL\LC = 5\\3  => a  = 13, P = 5, we find + + i.e.\ 13 + 5 13 + 5 /

Щ ) ’ С°т Ри*е the length of the angle bisector:

АЬ = Щ - l f  + ^ - l X2

c) By formula (9.3) find: S A
A B C 2

18

1
4
13

1
5
6

1 1 -л/ТзО
18

__33 
2 '



Hence, the area of the triangle ABC SABC = } A B C
2 • SABc 

BC
33

л/82 ’

since BC = yj( 13-4)2+ (6 -5 )2 =>/82. ■

Example 9.2. Given Cartesian coordinates of vertexes A(l, 1,3), 5(3,5,4), 

C (-l, 3,2), £>(5,3,-1) of the triangular pyramid ABCD, find:

a) the length of the segment DM connecting the vertex D of the pyramid and 

the point M  of intersection of medians of the face ABC ;

b) the volume VABCD of the pyramid.

□  a) Find the coordinates of the point M  (the intersection of medians of the triangle 

ABC ) by using a special case of formula (9.1):

M l + 3 + (-l) 1 + 5 + 3 .3  + 4 + 2' , i.e. M (l,3 ,3).

By formula (9.2) calculate

DM = yj( 1 -  5)2 + (3 -  3)2 + (3 + 1)2 = 4л/2 .

b) Find the volume of the pyramid ABCD . By formula (9.4), subtracting the 

first row from the others and expanding the determinant across the last row (see 

Section 2.2), we obtain

v  ABC D

1 1 3 1 1 1 3 1
2 4 1

3 5 4 1 1 2 4 1 0 1 / \l+ 4  -= — (-1) -1- 
6 v '

-2 2 -1
-1 3 2 1 _ 6 -2 2 -1 0

4 2 -4
5 3 -1 1 4 2 -4 0

- • ( - 1 6 - 1 6 - 4 - 8 - 3 2 +  4) = 12.

Hence, V^ch = V,A BC D =  12. ■



9.1.2. Cartesian Coordinate Transformations on Plane and in Space

Let’s give formulas connecting coordinates of a point during the transition from 

one Cartesian coordinate system to another one. Consider three types of 

transformations:

a) translation;

b) rotation;

c) reflection across abscissa (changing direction of the ordinate axis to the 

opposite one).

Coordinates x ,y  of a point in the old coordinate system О i j  and coordinates 

x \ y '  in the new coordinate system O'T f  are related to one another by the following 

formulas:

a) After the translation of a coordinate system (Fig. 9.5, a) by a vector

c) After the reflection across abscissa (changing direction of the ordinate axis 

to the opposite one) (see Figure 9.5, c):

Any transformation o f a Cartesian coordinate system on a plane can be 

reduced to a composition o f transformations, each o f them being a translation, 

rotation or reflection across an axis.

X = xs + x ' ,

y  = y s + y' ■

b) After the rotation of a coordinate system by an angle cp (Fig. 9.5, b):

x = x' • cos cp -  У  • sin cp, 
у  = x ' • sin cp + у ' -coscp.



У

7
O'7

l - - ^ A

!x'
l x

Figure 9.5

Suppose we have two Cartesian coordinate systems on a plane: Oi j  and 

O'7  / . Formulas, connecting old and new coordinates of a point, take the form:

• for coordinates systems with the same orientation (i.e. transitions between 

right and right or left and left coordinate systems) (Fig. 9.6, a):

j x = xs + x' ■ coscp -  y ’ • sincp, 

1 У = У s + • sin Ф + У • cos cp,
(9.5)

• for coordinates systems with different orientations (Fig. 9.6, b):

{x = xs +x' • coscp + У • sin cp,

1 У = ys + x' • sin Ф -  У • coscp.
(9.6)

Figure 9.6

For the above transformations of point coordinates, new coordinates are

expressed via the old ones by the following formulas:

x' = x - x  , Г x' = x-coscp + y-sincp, Г x' = x,
' b) , . '  ^  c) J

y = y - y s , [y  =-x-sincp + y-coscp, [ y = - y .a)



For transformation (9.5) similar formulas take the form:

Г x' = ( x - x s) ■ coscp + ( y -  y j  • sincp, 
[ у  = -  (x -  xs) • sin Ф + (y -  ys) • coscp.

(9.7)

For xs = 0 , ys = 0 and cp = - j  from formula (9.6) we obtain the transformation

that changes the names of axes (reflection across the line containing the bisector of 

the first coordinate angle).

Transformations of Cartesian Coordinates in Space

Consider three types of transformations of a Cartesian coordinate system:

a) translation-,

b) rotation around an axis’,

c) reflection on a plane (changing direction of one axis to the opposite one). 

Coordinates x , y , z  of a point in the old coordinate system Oi j k  and

coordinates x’,y ' , z ' in the new coordinate system O 'l j 'k '  are related to one 

another by the following formulas

a) After the translation of a coordinate system by an origin translation vector 

s = 0 0 , = xs -T + ys -j  + zs - k :

x = xs + x’,

< У = ys + У ,
z = zs +z' .

b) After the rotation of the coordinate system by an angle cp around the 

applicate axis:

x = x'-coscp- У -sincp,
< у = x ' -sincp + У -coscp, 

z = z ' .

It’s obvious that a coordinate system on the plane Oxy is rotated by an angle cp 

during this transformation.



c) After the reflection on the plane Oxy (changing direction of the applicate

axis to the opposite one):
( tx = x ,

< у  =  У ,

Reflections on other coordinate planes are defined similarly (changing 

direction of the abscissa or ordinate axis to the opposite one).

Any transformation o f a Cartesian coordinate system in space can be reduced 

to a composition o f transformations, each o f them being a translation, rotation 

around an axis or reflection on a coordinate plane.

In particular, for a composition of rotation by an angle cp around the Oz axis

and translation by a vector J  = ОСУ = xs -i + ys • j  + zs -k coordinate transformation 

formulas take the form:

x = xs +x' ■ coscp -  у ’ • sincp,
* У  =  Уз + x ' -sincp + y  -coscp, (9.8)

z = zs + z'.

Formulas for expressing new coordinates of points via the old ones take the

form:

x' = (x -  x j  • coscp + (y -  ys) - sincp,
< у  = - (x  -  X s)  • sincp + ( y - y j -  coscp, (9.9)

Similar formulas can be written for other compositions of transformations, e.g. 

to obtain formulas of coordinate transformations for a composition o f rotation by an 

angle cp around the abscissa axis and translation by a vector

J  = 0 0 ' - x s ■ i +ys - j  +zs -k , we should write formulas (9.8) or (9.9), making a 

cyclic interchange of letters x to у , у  to z , z to x :

x = x +xCs ’

< у = ys + у ' ■ coscp-z'-sincp, or 
z = zs + у' ■ sin cp + z' • cos cp

x' = x -  xs ,
< У = ( y - y s) -coscp +  ( z - z >  s in c p ,  

z  = - ( y - y J - s i n c p + ( z - z j - coscp .

(9.10)



b y  t r a n s i t i o n  b y  t h e  v e c t o r  J  =  2 - i  +  j  a n d  r o t a t i o n  b y  t h e  a n g l e  (p =  у . F i n d

c o o r d i n a t e s  o f  t h e  p o i n t  A ( x ' , y ' )  i n  n e w  c o o r d i n a t e  s y s t e m .

□  S i n c e  x s = 2 ,  y s =  1 ,  b y  f o r m u l a s  ( 9 . 7 )  w e  o b t a i n :

y  =  ( 3 - 2 ) - c o s |  +  ( 4 - l ) - s i n |  =  l  +  N ^  =  l ± M  ;

у  = —(3 —2)-sin^- + (4 —l)-cos^ = —̂ -  + l  = .3 y ^  . ■

Example 9.4. The point A in old coordinate system Oi j  к has coordinates 

x = 3, у = 4, z = 5. New Cartesian coordinate system O'7 j ’k’ is obtained from the

old one by transition by the vector J  = 2 ■ i + 3 • j  +k and rotation by the angle cp = -j

around the abscissa. Find coordinates of the point A(x',y ',z ') in new coordinate 

system.

□  Since xs = 2, ys = 3, zs = 1, by formulas (9.10) obtain:

/  = 3 -2  = 1;

/  = (4 -3 ) -c o s f+  ( 5 - l ) - s m f  = 1  + M  = ! ± M  .

z' = - ( 4 - 3 ) - s in |  + ( 5 - l ) - c o s | = - ^  + |  = ^ ^  . ■

9.2. POLAR COORDINATE SYSTEM

A  p o l a r  c o o r d i n a t e  s y s t e m  o n  p l a n e  i s  a n  a g g r e g a t e  o f  p o i n t  О ,  c a l l e d  t h e  p o l e , 

a n d  r a y  Ox ,  c a l l e d  t h e  p o l a r  a x i s .  A l s o  a  s c a l e  i n t e r v a l  i s  g i v e n  t o  m e a s u r e  d i s t a n c e s  

f r o m  p o i n t s  o n  a  p l a n e  t o  t h e  p o l e .  A s  a  r u l e ,  v e c t o r  i  o n  a  p o l a r  a x i s ,  a p p l i e d  t o  

p o i n t  О , i s  c h o s e n  a n d  i t s  l e n g t h  i s  t a k e n  a s  r a n g e  o f  t h e  s c a l e  i n t e r v a l ,  w h i l e  i t s  

d i r e c t i o n  s p e c i f i e s  p o s i t i v e  d i r e c t i o n  o n  t h e  p o l a r  a x i s  ( F i g .  9 . 7 ,  a ) .



Figure 9.7

The position of point M in a polar coordinate system is determined by the

distance r (iradius) from point M to the pole, i.e. r = OM and the angle cp (polar

angle, or azimuth) between the polar axis and vector O M . Radius and polar angle 

make polar coordinates of point M , written as M (r, cp). Polar angle is expressed in

radians and is measured from the polar axis:

• in positive direction (counterclockwise) if the angle value is positive;

• in negative direction (clockwise) is the angle value is negative.

Radius is defined for any point on a plane and takes on non-negative values 

r > 0. Polar angle cp is defined for any point on a plane, except for the pole О , and 

takes on values -% < cp < n , called principal values of the polar angle.

A polar coordinates system Or cp can be associated with a Cartesian coordinate

system Oi j  , origin О of which coincides with the pole, and the abscissa axis (more 

exactly, positive abscissa semi-axis) -  with the polar axis. The ordinate axis is added 

perpendicular to the abscissa axis so that a Cartesian coordinate system is obtained 

(Fig. 9.7, b). Lengths of basis vectors are determined by the scale interval on the 

polar axis.

Vice versa, if a right-handed Cartesian system is given on plane, we can obtain 

a polar coordinate system (associated with the given Cartesian one) by assuming 

positive abscissa semi-axis as the polar axis.

Let’s give formulas for converting polar coordinates r , cp of point M , not the 

same as point О , to Cartesian coordinates x , y . By Figure 9.7, b we obtain:

x = r-coscp, 
y  = r-sincp.

(9.11)



These formulas allow us to find Cartesian coordinates by given polar coordinates. 

The reverse conversion is performed by the formulas:

r = y[x2

coscp = — = •
r

X

\ j x 2 + y 2

уSin Ф = — = ■ r
У

J x 2 + y 2

(9.12)

Two last equalities give the polar angle with accuracy up to summands 2nn,

where n e  Z. For x^O it follows that tancp = —. The principal value of the polar
x

angle cp (—7Г < ф < 7T) is found by the formulas (see Figure 9.8):

уarctan —.x x > 0 ,

<P = i

к + arctan —, x < 0, у > 0, x

- к  + arctan —, x < 0, у < 0,x
тг
2 ’

Ж
2'

x = 0, у  > 0, 

х = 0, у  < 0.

II У 1
уcp = л + arctan —
X

1 I
у

Ф = arctan —
X

у
Ф = - л  + arctan —

у  x
Ф = arctan —

X X

III IV

Figure 9.8

The principal value of the polar angle can be chosen differently, i.e. 0 < cp < 2tz.



a) sketch coordinate lines r = 1, r = 2, r = 3, cp = , cp = у , cp = ;

b) plot points A/j, M 2 with polar coordinates rx=3, cp, = , r2- 3,

cp2 = -  . Find principal values of these points’ polar angles;

c) find Cartesian coordinates of points M x, M2;

d) find polar coordinates of point A , given its Cartesian coordinates ^4(—3,4).

a b e

Figure 9.9

□  a) Coordinate lines r = 1, r = 2, r = 3 are circles of respective radiuses, and lines

ф = ?  ’ ф = §  ’ q) = ^ Lare rays (Fig- 9-9^)-

b) Let’s plot points and М2|з, (Fig- 9-9, >̂c). Their

coordinates have different polar angles, but the same principal value cp = ̂ . Hence, it

is the same point that coincides with point M  |з , , plotted on Fig. 9.9,a.

c) Taking into account step ‘b’, find Cartesian coordinates of point M . By 

formulas (9.11) obtain:
\

J
~ 7J 3V2 . . 71 3-s/2x = r- coscp = 3 • cos-7- = ----- ; у = r • sincp = 3 • sm— = ------

4 2 4 2
i.e. M 3>/2 Зл/2



d) For point Л(-3,4) by formulas (9.12) find radius rA = ^/(—3)2 + 42 =5, and, 

taking into account Fig. 9.8, the principal value of the polar angle 

q>A = n + arctan|^pj = ж -  arctan . ■

The distance between two points A(r4, cp4) and B(rB,q>B) (the length of 

segment AB on Fig. 9.10) is calculated by the formula

AB = y\r2A +r*-2-rA-rB-cos(cps - q> J ,

and the area S шш  of a parallelogram constructed on vectors О A and OB -  by the

formula

S#OA,OB № sm Фд-Фл

7Г 27ГExample 9.6. Given polar coordinates cp^ = —, rA=4 and cps  = — , rB = 2 of

points^ and В (Fig. 9.11), find:

a) the scalar product (OA, OB) ;

b) the length of the interval A B ;

c) the area of a parallelogram constructed on vectors OA and OB;

d) the area S0AB of the triangle О A В ;

e) the coordinates of the midpoint C of the interval AB in the Cartesian 

coordinate system, related to the given polar one.



□  a) By the definition of scalar product find:

(OA, OB) OA OB 71' cosv|/ = rA-rB- cos(cps -  срл) = 4 • 2 • cos— = 4

b) Calculate the length of the interval:

AB = ylrA + rl - 2• rA • rB • cos(cps -q>A) = ^A 2 + 22- 2 - A- 2 - \  = 2"Jb .

c) Find the area of a parallelogram constructed on vectors OA and OB :

8#ш,ш = га -гв - М ^ в - ^ а \ = 2 -4 - ^  = 4л/з.

d) The area of the triangle OAB is calculated like a half of the area of a 

parallelogram constructed on vectors OA and OB :

S o ^ = ^ S ,m -B= \ - * S  = 24b.

e) By formulas (9.11) find Cartesian coordinates of points A and В :

„ 1 .
x a  =  г а  ’ cos cp̂  = 4 • — = 2 T/i = C  sm (P/, = 4 - ^ -  = l S

2

хв =гв -coscps =2
v L J

f  , л/з /Г= - l ;  Ts = ^-sincpB = 2- — = V3,

and then coordinates of the midpoint C of the interval :

*c  =
_ x A + xB _ 2  + (-! )  1.

Tc
Тл + Ts _ 2>/з + л/з _ Зл/З



To introduce a cylindrical coordinate system in space we need to:

• choose a plane (reference plane) and define on it a polar coordinate system 

with pole О and polar axis O x .

• draw axis Oz (applicate axis) through point О perpendicular to the 

reference plane and choose its direction so that increase of polar angle, seen from 

positive direction of axis Oz, happens counterclockwise (Fig. 9.12, a).

Figure 9.12

Cylindrical coordinates of point M  is an ordered triplet of numbers r , cp, z -  

radius (r >0), azimuth (—7i < cp< 7t) and height ( - 0 0  < z < +oo). The polar angle of 

points that belong to the applicate axis is not determined, they are defined by height 

and zero radius.

A cylindrical coordinate system O rcpz can be associated with a Cartesian 

coordinate system Oi j  к (Fig. 9.12, b), the origin of which coincides with the

origin of the cylindrical coordinate system and basis vectors i ,k  -  with unit vectors 

on the polar axis and the applicate axis, respectively, and basis vector j  is chosen in

such way that triplet i , j  ,k  is right (giving us a standard basis).

Vice versa, if a right-handed Cartesian system is given in space, we can obtain 

a cylindrical coordinate system {associated with the given Cartesian one) by 

assuming positive abscissa semi-axis as the polar axis.



Since applicate z of point M  in a Cartesian coordinate system and height z in 

a cylindrical coordinate system are the same, formulas that relate Cartesian 

coordinates x,  у ,z of point M  and its cylindrical coordinates r , cp, z , take the form:

x = r-coscp, 
у = r-sincp, (9.13)

z = z .

These formulas allow us to find Cartesian coordinates by the given cylindrical

ones.

The reverse conversion is performed by the formulas:

The principal value of the azimuth cp (—тг < q> < 7i) is found by the formulas 

given on Fig. 9.8.

These formulas allow us to find cylindrical coordinates by the given 

Cartesian ones.

Example 9.7. In the cylindrical coordinate system O r § z :

a) built coordinate surfaces r = R, cp = 0,cp = cp0, z = 0, z = z0;

b) find cylindrical coordinates of point A by the given Cartesian coordinates

c) find Cartesian coordinates of point В by the given cylindrical coordinates:

(9.14)
smcp =

z = z.

A{4,~ 3, 2);



□  a) Coordinates surface r = R , i.e. geometric locus of points M(R,q>,z) with a

fixed value of radius r = R , is a right circular cylinder, the axis of which coincides 

with the applicate axis (Fig. 9.13). It explains the name of cylindrical coordinate 

system. Coordinate surface cp = cp0, i.e. geometric locus of points M(r,cp0,z) with a 

fixed value of azimuth cp = cp0, is a half-plane bound by the applicate axis (Figure

9.13 shows half-planes cp = 0 and cp = cp0=^p-). Coordinate surface z = z0, i.e.

geometric locus of points M(r,cp,z0)with a fixed value of height z = z0, is a plane 

perpendicular to the applicate axis (Figure 9.13 shows planes z = 0 and z = 2).

b) Find cylindrical coordinates of point A (4 ,-3 ,2 ) . The height z  ̂= 2, the 

radius and the azimuth are found by formulas (9.14) taking into account Fig. 9.8:

га = у1ха + Уа = + (- 3)2 =5; <$A = arctan—  = arctan—  = -arctan—; z  ̂= 2,

since -л: < cp < л: and orthogonal projection of point A on coordinate plane Oxy

(reference plane) belongs to quadrant I V .

c) Find Cartesian coordinates of point В . By formulas (9.13) calculate (see 

Example 9.6):

xs = Vcoscps = 2 - ( - i )  = - l ;  Ts = Vsincps = 2 - 4  = V3; zB=l . U



To introduce a spherical coordinate system in space we need to:

• choose a plane {reference plane) and define on it a polar coordinate system 

with pole О {origin o f the spherical coordinate system) and polar axis O x .

• draw axis Oz {applicate axis) through point О perpendicular to the 

reference plane and choose its direction so that increase of polar angle, seen from 

positive direction of axis Oz, happens counterclockwise (Fig. 9.14, a).

Figure 9.14

Spherical coordinates of point M  is an ordered triplet of numbers p,cp,0 -  

radius (p > 0), polar angle ( -n  < cp < n ) and azimuthal angle (0 < 0 < л ). The polar 

angle of points belonging to the applicate axis is not determined, they are defined by 

radius p and azimuthal angle 0 = 0 for the positive part of axis Oz and 0 = тг for its 

negative part. The origin is defined by zero value of radius p. Sometimes angle

v|/ = y - 0 ,  taking on values — , is called the azimuthal angle instead of

angle 0.

A spherical coordinate system ОpcpO can be associated with a Cartesian 

coordinate system Oi j  к (Fig. 9.14, b), the origin of which coincides with the

origin of the spherical coordinate system and basis vectors i , к - with unit vectors on 

the polar axis Ox and the applicate axis Oz, respectively, and basis vector j  is

chosen so that triplet i , j  ,k  is right (giving us a standard basis).



Vice versa, if a right-handed Cartesian system is given in space, we can obtain 

a spherical coordinate system (<associated with the given Cartesian one) by assuming 

positive abscissa semi-axis as the polar axis.

Formulas that relate Cartesian coordinates x , y , z  of point M  and its 

spherical coordinates p , cp,0 follow from Fig. 9.14,

x = p-coscp-sin0,
< у  = p-sincp-sin0, (9.15)

Z = p-COS0.

This formulas allow us to find Cartesian coordinates by the given spherical

ones.

The reverse conversion is performed by the formulas:

/ 2 2 , 2p = yjx + T ,

coscp = X

P 2 + y 2 ’

sin cp = ■ У
J x 2 + y 2

(9.16)

0 = arccos— = arccos 
P

Formulas (9.16) allow us to calculate the polar angle cp with accuracy up to

z
J x 2 + y 2 + z2

summands 2ш , where n e Z .  For x ^ 0 it follows that tancp = —. The principal
x

value of the polar angle cp (-7Г < cp < 7Г) is found by the formulas given on Fig. 9.8. 

Example 9.8. In the spherical coordinate system Оpcp0:

a ) built coordinate surfaces p = R,  cp = cp0, 0 = 0O ( 0 < 0O < л );

b ) fmd spherical coordinates p,cp,0 of point A by the given Cartesian 

coordinates A[4,~ 3,12);

c )  find Cartesian coordinates x , y , z  of point В by the given spherical 

coordinates: p = 4; cp = ̂ , 0 = -=̂ -.



Figure 9.15

□  a) Coordinate surface p = R , i.e. geometric locus of points M(i?,cp,0) with a fixed 

value of radius p = R , is a sphere with the center in the origin (Fig. 9.15). It explains 

the name of spherical coordinate system. Coordinate surface cp = cp0, i.e. geometric 

locus of points M(p,cpo,0 ) with a fixed value of polar angle cp = cp0, is a half-plane 

bound by the applicate axis (Fig. 9.15 shows half-plane cp = 0). Coordinate surface 

0 = 0O, i.e. geometric locus of points A/(p,cp,0o) with a fixed value of azimuthal 

angle 0  = 0 O ^ f , is a cone, axis of which coincides with the applicate axis and vertex 

-  with the origin. For 0 = -f we obtain the reference plane. Fig. 9.15 shows cone 

0  = 0 O ^ -§ and reference plane 0  = -f.

b) Find spherical coordinates of point A{4,~ 3,12). By formulas (9.16), taking

into account Fig. 9.8 (see Example 9.6), we obtain:

I-----------2------- 3 12p = -\J42 + (-3 ) 2 +122 =13; cp = - arctan—; 0 = arccos— .

c) By formulas (9.15) we obtain

x = p • coscp • sin0 = 4 • ( - 7 )- (-у-) = -л/2 ; у  = p • sin cp • sin0 = 4 • =л/б ;

z = p • cos0 = 4 = -2л/2 . ■



EXERCISES

1. Consider coordinates x = n , y  = m, z  = n + 2 of point A in old coordinate 

system Oxyz. The new one O'x'y'z' is obtained by the translation by vector

J  = 3n • i -  m- j  + 2 • к and rotation by angle cp = ^  around applicate axis. Find

coordinates x ', y ' , z' of point A in new coordinate system.

2. Given the polar coordinates rA = m, q>A= -j^n and rB = m + 5, cps = - ^ n  of

points^ and В find the length of segment AB , area of triangle OAB and coordinates 

of the middle point of AB in Cartesian coordinate system Oxy, associated with the

given polar coordinate system Or cp.

3. Given the cylindrical coordinate system Orcpz and Cartesian coordinate 

system Oxyz, associated to it, find:

a) cylindrical coordinates of the point A , if its Cartesian coordinates are

A(2n, -3m, m + n);

b) Cartesian coordinates of the point B, if its cylindrical coordinates are: 

rB=3n, cpB= ^ n ,  zB = m.

4. Given the spherical coordinates system Opcp0 and Cartesian coordinate 

system Oxyz, associated with it, find:

a) spherical coordinates of the point A, if its Cartesian coordinates are

A(2n, -3m, m + n);

b) Cartesian coordinates of the point B, if its spherical coordinates are: 

pB=n + 4, q>B= f + 3 o w> es = f  •



CHAPTER 10. ALGEBRAIC PLANE CURVES

10.1. FIRST-ORDER CURVES (LINES ON PLANE)

10.1.1. Main Types of Equations for Lines on Plane

A nonzero vector n , perpendicular to the given line, is called a normal vector 

(or simply ‘normal) to this line. A direction vector of a line is a nonzero vector, 

collinear with this line, i.e. belonging to the line or parallel to it. Two lines are called 

collinear, if they are parallel or coincident.

General equation of a line on plane:

A-x + B-y + C = 0, А2 + В2ф 0. (10.1)

Way of representation', the line passes through point M 0(x0,y0) perpendicular 

to the vector n = A -i +B- j  (Fig. 10.1,a).

Geometric sense o f coefficients', leading coefficients A, В are the coordinates 

of the normal n = A - i + В ■ j  ; constant term С = -A x 0-  В y0.

Figure 10.1

Denoting radius-vectors of points M 0(x0,y0) and M {x,y) by 70 and 7, 

respectively, we can write a vector equation o f a line on plane, passing through point 

M0(i0J 0) perpendicular to the normal n= A -i + В • j  :

(7 -7 0,n) = 0.

The scalar product is equal to zero, representing perpendicularity condition of 

vectors 7 -70 and n (see Section 9.7). In coordinate form the equation takes the 

following form:



Normalized equation of a line on plane:

x-cosa + y -c osp-p  = 0, p>0 .  (10.3)

Way of representation, the line passes through point M0(x0,y0) perpendicular

to the vector n=cosa-z  +cosP- j  (Fig. 10.1,a).

Geometric sense o f coefficients', leading coefficients cos a ,  cosp are direction

cosines of the normal n = cos a  • i + cosp • j  ; constant term p =
Ax() + By() 

si A2 + B2
is the

distance from the origin to the line (Fig. 10.1,&).

Vector parametric equation of a line on plane:

7 = 70+ t-p , t e l ,  рФо . (Ю-4)

Way of representation the line passes through point Af0(x0,y0), which is 

defined by radius-vector 70, collinear with the direction vector рф о  (Fig. 10.2).

Parameter t in equation (10.4) has the following geometric sense: the value of 

t is proportional to the distance between the initial point M0 and point M , defined

by radius-vector 7.

Physical sense o f parameter t : it is time in uniform rectilinear motion from 

point M  along the line. For t = 0 point M  coincides with the initial point M0 

(T = 7f), when t is increasing, the motion happens in the direction determined by the 

direction vector p .

Direction vector 
of a line 

p=a-i +b-J

Figure 10.2



x = x0 + ci-t, 
y = y0 + b -t,

?eR ,  а2 + Ь2Ф 0. (10.5)

Way of representation: the line passes through point M()(x0,y0,z0) collinear 

with the vector p = a - i +b ■ j  (Fig. 10.3).

Geometric sense o f coefficients', a and b are coordinates of direction vector of 

the line p  = a - i + b- j  ; x0, y0 are coordinates of point M 0(x0,y0,z0) that belongs to 

the line. Parameter t has the same sense as in equation (10.4).

Note that equation (10.5) is a coordinate form of equation (10.4).

Canonical equation of a line on plane:

Way of representation', the line passes through point M()(x0,y0,z()) collinear 

with the vector p = a -i +b ■ j  (Fig. 10.3).

Geometric sense o f coefficients: a and b are coordinates of direction vector of 

the line p = a - i + b ■ j  ; x0, y0 are coordinates of point M 0(x0,y0,z0) that belongs to 

the line.

Figure 10.3

One of the denominators a or b in equation (10.6) can be equal to zero, in this 

case we assume the corresponding numerator equal to zero:

jc- x
о_ = У_— У о _  ̂ а 2 +  Ь 2 ф О . ( 10.6)

a b

X- Xp  _ y - y о 
0 b

x = x, equation of a line parallel to the ordinate axis;

x - x
y  = y 0-  equation of a line parallel to the abscissa axis.

a



r = (1 - 1) ■ r0 +1 ■ rx, te  R (10.7)

Equation (10.7) can be rewritten in coordinate form:

X = (1 -1) • xn + t • X, ,
V 7 0 1 t e R .

y = (l-t)-y0 +t-y1,

Way o f representation, the line passes through two given points M 0 (x0, y0) and 

M x(xx,yx) which are defined by radius vectors 70 and 7X, respectively (Fig. 10.4). 

Radius vector T defines the position of point M (x,y ,z)  that belongs to the line.

Geometric sense o f coefficients'. x0,y0 and xx,yx are coordinates of points 

M 0(x0,y0) and M x(xx,yx), through which the line (10.7) passes. Parameter t in 

equation (10.7) defines the position of point M (x,y,z) that belongs to the line, e.g., 

for t = 0point M  coincides with point 7  = 70, and for t = 1 -  with point Mx (7  = 7j). 

Equation o f a line on plane passing through two given points M0(x0,y0)

and

Way o f representation, the line passes through two given points M0(x0,y()) and

Geometric sense o f coefficients'. x0,y0 and xx,y x are coordinates of points 

M 0(x0,y0) and M fx ^ y ^ ,  through which the line (10.8) passes. Like in the

canonical equation, one of the denominators in (10.8) can be equal to zero, assuming 

the corresponding numerator equal to zero as well.

*i-*o У1 -У 0
( 10.8)

M fx x,yx) (Fig. 10.4).



Two intercept form for the equation o f a line:

-  + — = 1, -  * 0 , y  * 0 . (10.9)
-  У,

Way of representation: the line passes through two given points X,( x, ,0) and 

7, (0, У1 ) (Fig. 10.5).

Geometric sense o f coefficients: line (10.9) intercepts coordinate axes, cutting 

off segments — on the abscissa axis and y1 on the ordinate axis.

Figure 10.5

Slope-intercept form for the equation o f a line (equation solved for y ):

y = к • -  + y0, к = tan a . (10.10)

Way of representation: the line passes through point 70(0,y0) including angle 

a  (0 < a< n , a ^ f )  to positive direction of the abscissa axis (Fig. 10.6).

Geometric sense o f coefficients: к is the slope of the line and y0 is the 

ordinate of point 70(0, y0), through which the line (10.10) passes.



If the line passes through the given point M0(x0,y0), we use the slope- 

intercept form of the equation as: у  -  y0 = к • (x -  x0) .

Ways of Converting from One Form of Line Equation to Another

1. To convert from the general equation of a line (10.1) to the normalized one 

(10.3) it is sufficient to divide both parts of the general equation by the length of the

normal \n\ = yjA2 + B2 , if the constant term is negative (C<0) ,  or divide by its 

= -  yj A2 + B2 , if the constant term is non-negative (C > 0 ).opposite - n

2. To convert from the general equation of a line (10.1) to the canonical one 

(10.6) we should make the following steps:

1) find any solution (x0,y0) to equation A ■ x + В • у  + С = 0, thus defining

coordinates of point M0(x0,y0) that belongs to the line;

2) find any nonzero solution (a, b) of homogeneous equation A • a + В • b = 0, 

thus defining coordinates a , b of the direction vector p , in particular we can assume

a = B , b = -A ;

3) write canonical equation (10.6).

3. To convert from the canonical equation of a line to the general one it’s 

sufficient to transpose all terms of equation (10.6) to the left part:

x -  X, у  -  y0 1 1 y0 x0---^ = 0 —-x-- y + —  —!L = 0 .
a b a b b a



Obtained equation (for аФ 0, Ьф 0) takes on form (10.1) where A = —, B = ~— ,
a 6

c  = 2i_^o_ 
b a
4. To convert from the canonical equation to the parametric one, assume left 

and right part of equation (10.6) equal to parameter t and write obtained double 

equation in form of a system (10.5):

a b
<̂>

x = xn + a ■ t ,
0 t e i .

y  = y0+ b-t,

5. It is possible to convert the general equation of a line (10.1) to the two 

intercept form (10.9) if all coefficients of general equation are not equal to zero. To 

do this, it is necessary to transpose the constant term to the right part of the equation: 

A- x + В ■ у = -  С , and then divide both part of the equation by -C  :

А В С C-----x + ----- у  = 1. Denoting x, = -----, yx=-----, obtain the intercept equation (10.9):
—C — С A В

*1 y,

6. To convert from the general equation of a line (10.1) A -x + B -y  + C = 0 to 

slope-intercept form (10.10), it is necessary to solve the general equation for the 

unknown у :

A C
= --------x -------

В В
y = k -x  + yQ,

A Cwhere к =---- , y0 =-----. This conversion is possible if В ф 0.
В В

Example 10.1. Given points ^(1,2) and on L(5,0) coordinate plane Oxy (in

Cartesian coordinate system), write the equation for the perpendicular bisector of 

segment KL (Fig. 10.7).



Figure 10.7

□  The perpendicular bisector, by definition, passes through the midpoint of segment 

KL perpendicular to it. Let’s find coordinates of the midpoint M  of segment KL

(see a special case of formula (9.1) in Section 9.1.1): M 1+5 2+0 i.e. M(3,l) .

Vector KL can be taken as the normal to the perpendicular bisector. Find coordinates 

of this vector by subtracting coordinates of its tail from the corresponding coordinates 

of its head:

KL =( 5) r o f 4 1 (АЛ

A A v-2, A
= n .

Hence, equation (10.1) of the required line is given by 4 - x - 2 - y  + C = 0.

Now we only have to find the value of the constant term C. Since point 

M(3, l) belongs to the line, its coordinates x = 3 ,y  = l must satisfy the equation of 

this line, hence, 4 - 3 - 2 - l  + C = 0. Thus C = -10.

Hence, the perpendicular bisector is determined by the following equation:

4-Jc-2-y-10  = 0 <̂> 2-x - y - 5  = 0.

The equation of this line can also be obtained in form (10.2), by inserting 

coordinates of the normal n = (4 -2 )r and point M  (3,1):

4 - ( x - 3 ) - 2 - ( y - l )  = 0.

The solution is obtained analytically, without using graphic representation (see 

Fig. 10.7). Plots in analytic geometry, as a rule, serve only as illustrations to 

solutions. ■



Example 10.2. Given line / , represented by equation x - 3 - y  + 3 = 0, and 

point M  (5,6) (Fig. 10.8) on coordinate plane Oxy (in Cartesian coordinate system), 

it is required:

a) write parametric equation of line m passing through point M  

perpendicular to the given line;

b) find orthogonal projection M, of point M  to line / ;

c) find coordinates of point M ' , symmetrical to point M  with respect 

to line / .

Figure 10.8

□  a) Normal n to line / is the direction vector p  to line m . Coordinates of the 

normal can be found from the general equation of line / : n = 1 • i -  3 • j , then 

p = l- i -  3 • j , xQ = 5, y0 = 6. Write the parametric equation (10.5) of line m :

x = 5 + 1 -t, 
y = 6 + (-3 )-t,

b) Projection Mt of point M  is the intersection point of lines m and / . Let’s 

find its coordinates. To do this, insert expressions of coordinates x = 5 + t, 

у = 6 -  3 • t from the parametrical equation of line m into the equation of line l : 

x - 3 - y  + 3 = 0 . We obtain the equation:

5 + f - 3 - ( 6 - 3 - f )  + 3 = 0 10-f-10 = 0 <» t = 1.
1 v 1 ч____ _____ j

x  v
У

The value t = 1 of the parameter is corresponded by the point with coordinates 

x = 5 + l = 6, y = 6 -  3- l = 3. Thus, the point in question is M t (6,3).



c) During step "a" we wrote the parametrical equation of line m . From this 

equation for t = 0 we obtain point M  , for t = 1 -  point M t , thus the point in question 

M' is obtained for t = 2, since by symmetry M M l = M tM  . Find the coordinates of 

the required point:

M '(5 + 1-2,6 + (-3)-2), i.e. M'(7,0).  ■

10.1.2. Geometric Relationships of Lines on Plane

Let two lines lx and l2 be given by their general equations

: Ay • x + By • у  + Су — 0 j l2 - Aq̂ • x + B2 • у  + C2 — 0

or equations in slope-intercept form:

ly\ у = ky • x + by; l2: y = k2-x + b2

Geometric relationship of two lines on plane can be assessed by coefficients of 

their equations with the help the following criteria:

• parallel lines:

Л Е С
—  = —  ф—  or ky=k2, by*b2;
A2 B2 C2

• coincident lines:

Л Е С
—- = —  = —  or ky=k2, by=b2\
A2 B2 C2

collinear lines:

—  = —  or ky=k2;
A2 B2

intersecting lines:

Ay ■ B2 Ф A2 ■ By or куфк2;

perpendicular lines:

Ay -A, + By -B2 = 0 or ky • k2 = 1.



f A1 • x + B1 • y  + C1 = 0, f y = k • x + b,,
1 or 1[ A2 • x + B2 • y  + C2 = 0 [ y = k2 • x + b2.

Example 10.5. Find geometric relationships of each pair of lines (intersection, 

parallelism, incidence, perpendicularity, if lines intersect, find their common point):

a) 2• x - y  + 3 = 0, -4 • x + 2• y - 6  = 0;

b) 2 • x + 3 • y -  6 = 0, 4 • x + 6 • y  + 3 = 0;

c) 3 • x -  2 • y  +1 = 0, 4 • x + 6 • y -16 = 0;

d) x + 2• y -3  = 0, x -4 •  y  + 3 = 0;

e) y  = - 4  •x + 1, y  = - 4  •x-3 ;

f) y  = - x + 1, -  2 • x + 2 • y  -  6 = 0.

□  a) Since A1 = 2, B1 = -1, C1 = 3, A2 = -4 , B2 = 2, C2 = -6  and -A- = A1_ 1
2 ,

B, 1 C  3 1 , A, B, C , 1 TT—  = — , —  = —  = — , then —  = —  = —  = — . Hence, lines are coincident
B2 2 C2 -  6 2 A2 B2 C2 2

b) Since A1 = 2, B1 = 3, C1 = -  6, A2 = 4, B2 = 6, C2 = 3 and A =1 
A  2 ’

B 2

1 C
2 9 C2

-2 , then —  = —  Ф — . Hence, lines are parallelA2  B 2  C 2  P

c) Since A  = 3, Bl = -2 , C , = 1, A2 = 4, B2 = 6, C2 = -16, then

A, • B2 = 3 • 6 = 18 and A2 • B, = 4 • (-2) = -8 . Hence, A, • B2 ^ A2 • B, and lines 

intersect. Since A, • A2 + B, • B2 = 3 • 4 + (-2) • 6 = 0, lines are perpendicular. 

Coordinates of the intersection point (1;2) satisfy the system of equations

f 3 • x - 2  • y  +1 = 0,
1 4 • x + 6 • y  -16 = 0.

d) Since A  = 1, Bl = 2, C, = -3 , A  = 1, B2 = -  4, C2 = 3, then A, • B2 ^ A2 • B, 

and A, • A2 + Bl • B2 = 1 • 1 + 2 • (-  4) = -7  ^ 0 . Hence, the lines intersect, but they are



f x + 2- y - 3  = 0, 
equations <

[ x - 4 - y  + 3 = 0.

e) Since kx = - 4, \  = 1, k2 = - 4, b2 = -3 , then kx=k2 и bl *b2. Hence, lines 

are parallel.

f) For the first line we have kx= -1, bx= 1. Solving the second equation for у , 

we obtain equation y = x + 3, i.e. k2 = 1, b2 = 3. Since кхФк2, lines intersect. Since 

lines are perpendicular. Coordinates of the intersection point (-1; 2) satisfy the

. \ y  = ~x +1,system of equations \ ■
[ y = x + 3.

10.1.3. Metric Applications of Line Equations on Plane

Let’s give formulas for calculating lengths of a line segments (distances) and 

values of angles by the equations of lines that form them.

An angle between two lines on plane is the angle between their direction 

vectors. By this definition we get not one, but two adjacent supplementary angles that 

add up to 7i. In elementary geometry, as a rule, the smaller of the two angles is

chosen, i.e. value cp of an angle between two lines satisfies the condition 0 < cp < ^ .

1. The distance d from pointM*(x*,y*) to line^-x + 5 -y  + C = 0(Fig. 10.9,

a) is calculated by the formula
A-x* + B-y* + C 

7 A2 + B2



2. The distance between two parallel lines Ax ■ x + Bx • у  + Cx = 0 and 

A2 ' + В2 ■ У + С2 ~ ® (Fig. 10.9, b) is calculated as the distance dx from point 

M 2(x2,y2) , coordinates of which satisfy equation A2- x2 + B2- y2 + C2 = 0, to line 

Ax-x + Bx-y + Cx = 0 by formula

d] =
\А^-х2 + В^шУ2+С^

3. The acute angle cp between two lines /, and l2 is found by formulas

a) coscp =
aj • a2 + • b2

■\J Cl2 + /?| • sj ci2 + b
if pl = al -i +bx- j  and p 2 = a2-i +b2- j  are

direction vectors of lines lx and l2, respectively (if lines are given by the 

canonical or parametric equations (Fig. 10.10, a));

b) coscp =
Ax • A2 + Bx • В2

if nx = Ax • i +BX- j  and n2 = ^  • i +
V 4 2 + b ,2 -V A l  +  B l  

+B2- j  are normals to lines lx and /2, respectively (if lines are given by the 

general equations (Fig. 10.10, a));

^1 — к2c) tan cp =
l+ kx-k2

, kx ■ k2 ф -1 , if kx= tanoq and k2 = tana2 are slopes of

lines lx and l2 respectively (if lines are given by the equations in slope-intercept

form (Fig. 10.10, b)). If ^ - ^ 2 = - l ,  then cp = -j, since lines are perpendicular 

(see Section 10.1.2).

Figure 10.10



Example 10.6. Find:

a) the distance from point M*(1,-2) to line 3-x + 4- y + 10 = 0;

b) the distance between parallel lines 2-x + 3- y - 6  = 0 and 4-x + 6- y + 2 = 0;

c) the acute angle between lines lx: 3 - x - y - 3  = 0 and l2: x - 2 - y  + 4 = 0;

jc — 1 у — 3 , x - 4  y -2d) the acute angle between lines ----- =------and------- = -------;
7 - 1 - 3  1 - 2

e) the acute angle between lines у = 3 • x -1  and у = -2 ■ x + 2 .

□  a) Let’s use the first formula of metric applications (x* = 1, y* = -2 , A = 3, В = 4,

C = 10): d =
A-x* + B- у* + C 

y/A2 + B2
3-1+ 4 - ( - 2) +  10 

л/з2 + 42

b) Let’s choose an arbitrary point M 2(x2,y2) on the second line 

4-x + 6-y + 2 = 0, e.g., point M 2 (1,-1). Then by the second formula of metric 

applications we obtain (for A1 = 2, B} = 3, Cx = -6 ,  x2 = 1, y2 = -1):

A\' ̂ 2 "t" By' y2 + C, | 12 • 1 + 3 • (—1) — 6 1 7
4 у +вi ”  7? + ?  ” 7b '

c) By the general equations of lines find normals

nx=Ax-T + Bx -7 = 3-7 -1  -7,  й2 = Л2Т  + в 2-7 = 1 -Г -2 -7 ,

and angle cp between the lines by the third formula of metric applications (case “b”) 

(for 4 = 3 ,  Bx= - 1, 4 = 3 ,  B2 = - 2):

cos cp = 14  * - 4  "t" 4 '  ^2 3-l + (- l) - ( -2 ) | 1
V A2 + B2 -yJ 4  +В2 V З2 + (-1)2 - V l2 + (-2)2 5 -л/2 V2

Ф = Ж4 '

d) The lines are given by the canonical equations. By coefficients of the 

equations find direction vectors px=ax-i +bx- j  = -1 • / -  3 • j  ,

p2=a2-i +b2- j  = 1 • / -  2 • j  , and then -  angle cp between the lines by the third 

formula of metric applications (case “a”) (for ax= - l ,  bx= -3, a2 = 1, b2 = -2):



5
C O S  ф :

Ф=4-

I ах • a2 + bx ■ b2 | C-l) -1 + (-3) • (-2) |
+ >/ (-1)2 + (-3)2 • -у / l 2 + (-2)2 лДО -л/5 Л

e) By the equations of lines find their slopes: kx = 3, k2 =-2 ,  and then -  angle 

cp between the lines by the third formula of metric applications (case “c”):

tan ф = K ~ k2 3 -(-2 )
1 + kx • k2 1 + 3 • (-2)

= l , i e .  q> = &.

Example 10.7. Write the equation of a line passing through point y0= 1 on the

ordinate axis and forming angle with line y = -k -x +1.

□  The required line (with slope к ) makes acute angle ф = -  ̂ with the given line /

(with slope 1 ), tan ф = 1. By the third formula of metric applications (case “c”), 

taking into account that ф is an acute angle, compose the equation and simplify it:

1 = k - \
1 + k - \

1f~L
K 2 =±1 

1 + k - \
<» к ~1 = 1 + ̂ к , 

k - \  = - \ - \ - k .

We obtain two solutions: кх=Ъ or k2 = - ^ .  Hence, taking into account (10.10) for 

y0= 1, there are two lines that satisfy the given problem (Fig. 10.13) — /j: y  = 3 • x +1 

o r /2: у = - 1  • x +1. Note, that these lines are mutually perpendicular, since condition

k1-k2= 3 -( - j)  = - l  is satisfied. ■



10.2. SECOND-ORDER CURVES

10.2.1. Classification of Second-Order Curves

A second-order algebraic curve is the locus of points in plane which in some 

affine coordinate system Oxy can be given by an equation in form

an ■ x2 + 2 • al2 ■ x ■ у  + a22 • y 2 + 2 • al • x + 2 • a2 • у  + a0 = 0, 

where leading coefficients an , al2, a22 are not equal to zero at the same time 

(afj + af2 + a22 ^0).  For every second-order algebraic curve there exists a Cartesian 

coordinate system Oxy, in which the equation takes on the simplest (icanonical) 

form. This coordinate system, as well as the equation, are called canonical.

Canonical Equations of Second-Order Curves

1)

2)

3)

-  equation of an ellipse;

1- equation of an imaginary ellipse;

-  equation of a pair of imaginary intersecting

У

У
*

------ ---

N
4 . — - ' X  

*
*

X

lines;

4)

5)

6)

7)

8) 

lines;

9)

2 2

— -  У-г = 1 -  equation of a hyperbola;
a b

2 2X V—r -  2— = 0 -  equation of a pair of intersecting lines; 
a b

y 2 = 2 • p • x -  equation of a parabola;

y 2 - b 2 = 0 -  equation of a pair of parallel lines;

y 2 +b2 = 0 -  equation of a pair of imaginary parallel

y 2 = 0 — equation of a pair of coincident lines.



In these equations a > 0, b> 0, p>  0, where a > b in equations 1-3.

Lines (l),(4)-(7),(9) are called real, and lines (2),(3),(8) -  imaginary. Real 

lines are sketched out in canonical coordinate systems. Imaginary lines are hatched 

only for illustration.

A second-order curve is called a central conic if it has a unique center of 

symmetry. Otherwise, if a center of symmetry does not exist or is not unique, a line is 

called non-central. Central conics are ellipses (real and imaginary), hyperbola, a pair 

of intersecting lines (real and imaginary). Other curves are non-central.

10.2.2. Ellipse

An ellipse is a locus of points on plane for each of which the sum of distances 

to two given points b\ and b\ is constant {2a),  and bigger than the distance (2c) 

between these given points (Fig. 10.12, a). Points Fx and F2 are called focal points 

(foci), the distance between them 2c =  b\b\ -  focal distance, midpoint О of 

segment F]F2 -  center of the ellipse. Segments F fi  and I\M  that connect an 

arbitrary point M of the ellipse with its foci are called focal radiuses of point M .

Ellipse
F f i + F2M  = 2 a

a b c

Figure 10.12
Q

Proportion e = — is called an eccentricity of an ellipse. By definition {2a > 2c)
a

it follows that 0 < e < l .  The bigger is e, the more elongated an ellipse gets. For 

e = 0, i.e. for c =  0, foci F1 and F2, as well as the center О coincide, and ellipse is a 

circle o f radius a .



In a canonical coordinate system, chosen as illustrated on Fig. 10.12, b, 

an ellipse can be given by canonical equation
2 2 

У_ - 1
2 7.2 — ha b

where b = yja2 -  c2 .

Coordinate axes (of the canonical coordinate system) are the axes o f symmetry 

of the ellipse (called principal axes, the larger of these two axes is called the major 

axis, the smaller -  the minor axis), and its center -  center of symmetry. Segments a 

and b are called semi-major and semi-minor axis of the ellipse, respectively,

proportion к = ̂ <  \ is called an aspect ratio. Lines x = ±a, y  = ±b bound on the

coordinate plane the principal rectangle, inside of which the ellipse is situated (see 

Fig. 10.12, b). Points where coordinate axes cross the ellipse are called the vertices of 

the ellipse.

Parametrical equation of an ellipse in a canonical coordinate system takes the

form:

" x = a-cost,
0 < t <2%.

y = b-im t,

Equation of an ellipse in a polar coordinate system l'\ r cp (Fig. 10.12, c) takes 

the form:

P
r  =  - -------,1 - e-cos cp

b2where p = — is the focal parameter of an ellipse, 0 < e < 1.
a

Equation —— = 1, a > b , defines an ellipse with the center in
a b

point O'(x0,y0) , axes of which are parallel to the coordinate axes (Fig. 10.13, a). This 

equation can be reduced to the canonical one by translation. For a<b this equation 

defines an ellipse, foci of which are situated on an axis parallel to the Oy axis



(Fig. 10.13, b). In this case the equation can be reduced to the canonical one by 

translation and changing the names of coordinate axes (see Section 9.1.2).

Figure 10.13

For a = b = R equation (x -  x0)2 + {y -  y0)2 = R2 defines a circle of radius R 

and center in point O'(x0,y0) (Fig. 10.13, c).

Example 10.9. Sketch ellipses
2 2 . X у

a) Y  7  ’

b)
( ^ + 0 ^ =1

l2 22

in the given (Oxy) and canonical (O'x'y') coordinate systems. Find semi-axes, focal 

distance, eccentricity, aspect ratio and focal parameter.

a b c

Figure 10.14



□  a) Coordinate system Оху is canonical, since the given equation is in canonical 

form. By the equation define semi-axes: a = 2 is the semi-major axis, b = 1 -  the 

semi-minor axis. Built the principal rectangle with sides 2a = 4, 2b = 2 and center in 

the origin (Fig. 10.14, a). Taking into account the symmetry of the ellipse, inscribe it

into the principal rectangle. Find the aspect ratio A: = = focal distance

2-c = 2-yj a2 - b 2 = 2-V22 — 12 = 2л/3 ; eccentricity e = -̂ - = ̂ - ;  focal parameter

^ = - 4 4 -a 2 2
b) Comparing the given equation to the equation of an ellipse

fjc — i 2 (  V  — У 'j2
----- = 1, we obtain лг0 = 1, y0 = 2, a = 2, b = 1. Taking into account

a b

Fig. 10.13, a, sketch the given ellipse in the given and canonical coordinate systems 

(Fig. 10.14, b).

Note, that the canonical coordinate system O'x'y' is obtained from the given one after 

translating it by the vector Y = i + 2- j  . hi other words, change of unknowns

(У)2 ( 1/ ) 2
x = \ + x ', у  = 2 + y r converts the equation to the canonical form: v ̂  = 1.

Since the canonical equation of the ellipse is the same as in “a”, all the other 

parameters of these ellipses are the same: к = ; 2 • с = 2>/з ; e = ^ ; p  = j .

c) Comparing the given equation to the equation of an ellipse

( x - x 0)2 _ ( y - y 0f  _2 = 1, we obtain x0=3, y0 = - 1, a = 1, b = 2. Taking into account
a~ b

Fig. 10.13, a, sketch the given ellipse in the given and canonical coordinate systems 

(Fig. 10.14, c).

Note, that the canonical coordinate system O'x'y' is obtained from the given

one after translating it by the vector s = 3- i -  j  and changing the names of the axes. 

In other words, change of unknowns x = 3 + / , у  = - \  + x converts the equation to



( x ' Y  ( v ' Ythe canonical form: ^ = 1. Since the canonical equation of the ellipse is the 

same as in “a”, all the other parameters of these ellipses are the same: & = -!-;

•с = 2>/з; e = ^ ~ ;  p = \2 ’ P 2

10.2.3. Hyperbola

A hyperbola is a locus of points on plane for each of which the module of the 

difference of distances to two given points Fx and F2 is constant (2a) and smaller 

than the distance between these given points (2c) (Fig. 10.15,a).

Figure 10.15

Points /'j and F2 are called the foci of the hyperbola, the distance 2 c = FxF2 

between them -  focal distance, midpoint О of segment FXF2 -  center of the 

hyperbola. Segments l\M  and F2M  that connect an arbitrary point M of the

Q
hyperbola with its foci are called focal radiuses of point M  . Proportion e = — is

a

called an eccentricity of the hyperbola. By definition (2a < 2c) it follows that e > 1. 

Eccentricity e define the form of the hyperbola. Bigger values of e correspond to 

hyperbolas with wider branches, while values closer to 1 correspond to hyperbolas 

with more narrow branches.

In a canonical coordinate system, chosen as illustrated on Fig. 10.15, b, a 

hyperbola can be given by canonical equation



2 2 
X ___У _ 1

2 7.2 1 ’<2 О

where b = л/с2 -  а2 .

Coordinate axes (of the canonical coordinate system) are the axes o f symmetry 

of the hyperbola (called principal axes), and its center -  center of symmetry, a -  

real semi-axis, b -  imaginary semi-axis of the hyperbola. Lines x = ±ct, y  = ±b 

bound on the coordinate plane the principal rectangle, outside of which the 

hyperbola is situated (see Fig. 10.15, b). Points where coordinate axes cross the

ellipse are called the vertices of the hyperbola. Lines y = ± - - x  that contain the
a

diagonals of the main rectangle, are called the asymptotes of the hyperbola (see Fig. 

10.15, b).

The equation of the right branch of a hyperbola in a polar coordinate system

p b2F2r cp (Fig. 10.15, c) may be written as r =----- ------ , where p  = — is the focal
l-e-coscp a

parameter of the hyperbola, e > 1.

Parametrical equation of a hyperbola in a canonical coordinate system takes 

the form:

x = a • cosh t ,
y  = b-smht,

e* + e 1 e* — e (where cosh? = -------- is hyperbolic cosine and sinh? = ----------is hyperbolic sine.

Equation ( x - x 0)2 ( y - y 0)2 л defines a hyperbola with the center in point
a~ b‘

O'(x0,y0), axes of which are parallel to the coordinate axes (Fig. 10.16,a). This 

equation can be reduced to the canonical one by translation.

Equation ( x - x 0)2 | ( y - y 0)2 =l defines a conjugate hyperbola (Fig. 10.16,
a~ fr

b) with the center in point O'(x0,y0) . This equation can be reduced to the canonical 

one by translation and changing the names of coordinate axes (see Section 9.1.2).



( х - х 0)2 (у - у 0)2 
а2 Ъ2

(x - X q)2 ( у -  у0)2
2 ' т.2 1<2 Ь

У 1
[ X

V . .To
/ V

0 x0 x
Ь

Figure 10.16

Example 10.10. Sketch hyperbolas 

( x - 4 ) 2 ( y - 6 ) 2a) = 1;

( Z ^ _ ( ^  = 1
32 22

in the given (Oxy) and canonical coordinate systems. Find semi-axes, focal distance,

eccentricity, focal parameter, and equations of the asymptotes.

□  a) Comparing the given equation to the equation of a hyperbola

— X )2 ( у — у l2у---- —  у--------x o = ] we obtain x0 = 4, y0 = 6, a = 2, b = 3. Taking into account
a b

Fig. 10.18,<2, built the principal rectangle with sides 2<2 = 4, 2b = 6 and center in the 

origin of the canonical coordinate system. Draw the asymptotes by extending the 

diagonals of the principal rectangle. Build the hyperbola, taking into account its 

symmetry with respect to the coordinate (drawn in full line of Fig.10.16, c).

Note, that the canonical coordinate system O'x'y' is obtained from the given

one after translating it by the vector J  = 4 ■ i + 6 • j  . In other words, change of 

unknowns x = 4 + x ' , y  = 6 + y' converts the equation to the canonical form:

= 1. Calculate the focal distance 2 • c = 2 • J  a2 + b2 = 

= 2 • л/22 +32 = 2y/l3 ; eccentricity e = — = focal parameter p = -  = \ -  = 4,5.& 2* d 2



Write equations of the asymptotes у  -  y0 = ± ^  ■ (x -  x0) , i.e.

y - 6  = ± ^ - ( x -  4).

b) Comparing the given equation to the equation of a hyperbola

—^ -  + —— = obtain parameters x0=4,  y0 = 6, a = 2, b = 3 of a 
a b

hyperbola, conjugate with the one built in “a”. Taking into account Fig. 10.16, b, build 

the principal rectangle and the asymptotes as in “a”, and then build the conjugate 

hyperbola (hatched on Fig. 10.16, c).

Note, that the canonical coordinate system 0'x”y" is obtained from the given 

one after translating it by the vector J  = 4 ■ i +6 ■ j  and changing the names of the 

coordinate axes. In other words, change of unknowns x = 4 + у " , у = 6 +x” converts

(x”Y (y"Ythe equation to the canonical form: = 1 (here a = 3, b = 2). Calculate
32 22

the focal distance 2-c = 2-yj a2 + b2 = 2 • у/з2 +22 = 2%/l3 ; eccentricity е = ̂  =

focal parameter p = Y  = 2T = y ■ Equations of the asymptotes are the same as in “ar

10.2.4. Parabola

A parabola is a locus of points on plane that are equidistant from a given point 

F and a given line d  that does not pass through this point. Point F  is are called the 

focus of the parabola, line d -  directrix of the parabola, midpoint О of the 

perpendicular dropped from the focus on the directrix -  vertex of the parabola, 

distance p  between the focus and the directrix -  parameter of the parabola, and

n
distance between the vertex and the focus -  focal length (Fig. 10.17, a).

Parameter p  of the parabola define its form. Bigger values of p  correspond to

parabolas with wider branches, while values closer to 0 correspond to parabolas with 

more narrow branches.



(х,у) (г,ф)

Figure 10.17

A line, perpendicular to the directrix and passing through the focus, is called 

the axis of the parabola (focal axis). Segment FM that connects an arbitrary point 

M  of the parabola with its focus is called a focal radius of point M . Eccentricity of 

a parabola equals one by definition (e = 1).

In a canonical coordinate system, chosen as illustrated on Fig. 10.17, b, a 

parabola can be given by canonical equation

y 2 = 2- p-x.

VIn this coordinate system equation of the directrix is x = —j , coordinates of

the focus are F
f  p ^
. 2 ’° ,V z

. The axes of the canonical coordinate system are called the

principal axes of the parabola.

Equation o f a parabola in a polar coordinate system Frcp (Fig. 10.17, c) 

takes the form:

l - e - c o s c p  ’

where p  is the parameter of a parabola, e = \ is its eccentricity.

Equation (y -  y0)2 = 2 • p  • (x -  x0) , рФ 0, defines a parabola with vertex 

O'(x0,y0), the axis of which is parallel to the abscissa axis: for p>  0 the directions 

of axes Ox and O’x’ are the same (Fig. 10.18, a), and for p<  0 they are opposite



(Fig. 10.18, b). This equation can be reduced to the canonical one by translation (and 

changing the direction of the abscissa axis if p < 0).

O '-To)2
p> 0

To

О

2p(x -  x0)

a b

(x - x 0)2 = 2p{y -  T0)

Figure 10.18

Equation (x -  x0)2 = 2 ■ p ■ (у -  y0) , рФ 0 , also defines a parabola with vertex 

О'(х0,У0), the axis of which is parallel to the ordinate axis: for p>  0 the directions 

of axes Oy and O'x' are the same (Fig. 10.18, c), and for p<  0 they are opposite 

(Fig. 10.18, d). This equation can be reduced to the canonical one by translation, 

changing the names of the coordinate axes (and changing the direction of the ordinate 

axis if p < 0).

Example 10.11. Sketch parabolas

a) y 2 = 2-x\  b) ( у - 1)2 = -2• (x- 2 ) ;  c) ( x -2 )2 = 2-(y + l); 

in the given (Oxy) and canonical (O'x'у ')  coordinate systems. Find the parameter of 

the parabola, coordinates of the focus and equation of the directrix 

□  a) Coordinate system Oxy is canonical, since the given equation is in canonical 

form. From the equation obtain the parameter p  = 1. Build the parabola, taking into 

account its symmetry with respect to the abscissa axis (Fig. 10.19, a). Coordinates of

the focus are xF 2 “  2 ’ F ( r ° )

P
X 2 ■i.e. x = —1

2 '

Write the equation of the directrix

b) Comparing the given equation to the equation of a parabola 

(T -  To)2 = 2 ■ p  ■ (x -  x0) , we obtain x0 = 2 , y0 = 1, p  = -1 < 0. Taking into account



Fig. 10.20, b, build a parabola, symmetric with respect to axis O'x' (Fig. 10.19, b).

Note, that the canonical coordinate system O'xy is obtained from the given 

one after translating it by the vector 1 = 2 ■ i + j  and changing the direction of the 

abscissa axis. In other words, change of unknowns x = 2 -  x ', у  = 1 + /  converts the 

equation to the canonical form: ( y ' ) 2 = 2 -1-x'. Since the canonical equation of the 

parabola is the same as in “a”, the value of the parameter, the equation of the directrix 

1 P 1x' = ~ 2  an<̂  coordinates x'F = у  = ± , y'F = 0 of the focus are the same as the ones 

obtained in “a”.

c) Comparing the given equation to the equation of a 

parabola(x- x0)2 = 2 • p ■ ( y -  y0) , we obtain x0 = 2, y0= - 1, p = 1 > 0. Taking into

account Fig. 10.18, c, build a parabola, symmetric with respect to axis O'x' (Fig. 

10.19, c).

Note, that the canonical coordinate system O'x'y' is obtained from the given 

one after translating it by the vector 1 = 2 -i -  j  and changing the names of the 

coordinate axes. In other words, change of unknowns x = 2 + у ' , у  = - \  + x' converts 

the equation to the canonical form: ( / ) 2 = 2 -l-x'. Since the canonical equation of 

the parabola is the same as in “a” and “b”, the equation of the directrix x' = - and

coordinates x'F = у  = , y'. = 0 of the focus are the same as the ones obtained in “a”

and “b”. ■

Figure 10.19



EXERCISES

1. For the line, which passes through the points A(1,4) and B(2,0), compose: 

a) general equation; b) parametric equation; c) canonical equation;

d) intercept equation;slope-intercept equation.

2. Find information about positional relationship of each pair of lines (are they 

skew, intersecting, parallel, equal, perpendicular, if they are intersecting find their 

mutual point):

a) x + y  -  3 = 0, 2 • x + 3 • y  -  8 = 0;

b) y = 5• x -2 4 ,  y  = - 0 , 2 •x + 2;

x = 5 + 4 • t , x -1 y -  7 
y = - 2 - 2  •t, ~-2 = 1 ;

d) 4 • x + 5 • y -  6 = 0, x + 6 
5

y -  6
-  4

3. On coordinate plane Oxy sketch ellipses:

a) {xx -n y  + ( y + m l  = 1; b) w n l  + (y -  m)2 = 1.
(m + n)2 n2 m2 (m + n)2

For each ellipse find its focal distance, aspect ratio, focal parameter and 

eccentricity, coordinates of center, focuses and vertexes.

4. On coordinate plane Oxy sketch hyperbolas:

a) (x + n)2 -  (y -  m)2 = 1; b) (y + n)2 -  (x + m)2 = 1
m2 n2 m2 n2

For each hyperbola find its focal distance, focal parameter and eccentricity, 

coordinates of center, focuses and vertexes, equations of asymptotes.

5. On coordinate plane Oxy sketch parabolas:

a) (y  -  m)2 = 2 • n • x ; b) (y  + m)2 = 2 • (n -  x); c) (x -  m)2 = 2 • m • (y  + n) .

For each parabola find its parameter, coordinates of vertex and focus, equation 

of directrix.



CHAPTER 11. ALGEBRAIC LINES AND SURFACES IN SPACE

11.1. FIRST-ORDER SURFACES (PLANES)

11.1.1. Main Types of Plane Equations

A nonzero vector n , which is perpendicular to the given plane, is called 

normal vector (or simply normal) for this plane.

Recall, that three of more vectors are called coplanar, if there exists a plane, 

that they are parallel to. We will call this plane coplanar to the given vectors.

Direction vectors of a plane are two noncollinear vectors, which are coplanar 

to the given plane, i.e. they belong to the plane or they are parallel to it.

General (point-normal) equation of a plane.

A -x + B -y  + C- z + D = 0, А2 + В2 + С2ф 0. (11.1)

Way o f representation: plane passes through point M 0(x0,y0,z0) and it is 

perpendicular to vector n = A - i +B- j  + C ■ к (fig. l l .l ,a ) .

Figure 11.1

Geometric sense o f coefficients', leading coefficients^, В , C are coordinates 

of the normal n = A - i +B- j  + C -k ; constant term D = -A  ■ x0 -  В ■ y0 -  C • z0. 

Denoting radius vectors of points M0(x0,y0,z0) and M (x,y,z) by 70 and 7 

accordingly, it is possible to write vector equation of a plane, which passes through 

the point M0(x0,y0,z0) and which is perpendicular to normal n = A -i +B- j  +C -к :



( r - r 0,n) = 0.

Right zero part of the scalar product denominates perpendicularity condition of 

vectors 7 -7 0 and n (Section 8.7). In coordinate form equation can be expressed in 

the following form:

A -{x -x 0) + B - ( y - y 0) + C - { z - z 0) = 0. (11.2)

Normalized equation of a plane.

x-cosa + y-eosP + z-eosy-p  = 0, p>0 .  (11.3)

Way o f representation: plane passes through the point M0(x0,y0,z0 ) and it is 

perpendicular to the vector n=cosa-z  + cosP- j  + cosy-& (Fig. 11.1, o r ) .

Geometric sense o f coefficients', leading coefficients cosa,  cosP, cosy are 

direction cosines of normal « = c o s a - / +  +cosP-y +cosy-&; constant term

_ | A • x0 + В • y0 + C • z0 

P yj A2 + В2 +C2
is the distance between the coordinate origin and the plane

(Fig. 11.1, b).

Vector parametric equation of a plane.

r =r0+tx-p x+t 2 -p2, [pl,P2] ^ o .  (11.4)

Way of representation: plane passes through the point M0(x0,y0,z0), which is 

defined by radius vector 7(), and it is coplanar to two direction vectors p x, p 2 

(Fig. 11.2). Parameters tx , t 2 in equation (11.4) have the following geometric sense: 

values /,, t2 are proportional to the distance between the given point M0(x0,y0,z0) 

and the point M (x,y,z), which is defined by radius vector 7 . If t x = t 2 =0, then the 

point M (x,y ,z) coincides with the given point M0(x0,y0,z0) : 7  =  70 . Increase of t x 

(or t 2 ) results in the shift of the point M {x,y,z) to the direction defined by vector px 

(or p 2 ) ,  and decrease of tx (or t 2 ) to the opposite direction.



Parametric equation o f a plane:

x = x0 +  • ti +  a2 • ̂ 2 ,
y =  % +  b1 • t1 +  b2 • t2 - t 1. t 2 e  M  , rg
Z =  Zo +  Ci • ti +  C2 • 2̂ >

b a1 b1 c > 1

V a2 b2 c 2 J

=  2 . (11.5)

Way of representation: plane passes through the point M0(x0,y0,z0) and it is 

coplanar to two noncollinear vectors p 1 =  a1 • i +  b1 • j  +  c1 • к and

p 2 =  a2 • T +  b2 • j  +  C2 • к  (Fig.11.2).

Geometric sense o f coefficients: ax„b1,c1 and a2,b2,c2 are coordinates of 

direction vectors p 1 =  a1 • i +  b1 • j  +  c1 • k , p 2 =  a2 • i +  b2 • j  +  + c2 • k , and x0, y0, z 0 

are coordinates of the point M0( x0, y0, z 0), which belongs to the plane. Parameters 

t1, t2 have the same sense as in equation (11.4).

Note that the equation (11.5) is a coordinate form of the equation (11.4).

Equation of a plane, which passes through the given point and is coplanar to 

two noncollinear vectors:

Ок1к

y  -  y 0
Z  - .

a 1 b 1 c 1

a 2 b 2 c 2

0. rg
a1 b1 c1

V a 2 b 2 c 2 J

2. (11.6)

Way of plane representation and geometric sense o f coefficients in equation 

(11.6) are the same as in equation (11.5). Conditions [p1,p 2] ф o in (11.4) and



rg
ax bx

\ Cl2 ^ 2  C 2 J

2 in (11.5), (11.6) denominate noncollinearity property of vectors

A and p2.

Affine equation of a plane, which passes through the given three points.

r = (1-*1 - t 2)- r0 +tr  rx +t2 ■ r2, tx, t2 G  M .
Equation (11.7) can be rewritten in coordinate form:

X = (1 -  tx - 12) ■ x0 + tx ■ xl +12 ■ x2, 
y = ( l - t l - t 2)-y0+tl -yi +t2 -y2, tx, t2 G  M .
z — (1 — — tf) • + tx • Zj + 12 • z2,

(11.7)

( 11.8)

Way of representation: plane passes through the three given points 

M0(x0, y0,z0 ), Mfx^y^Zy), M 2(x2,y2,z2), which are defined by radius vectors r0, 

Tx and T2 accordingly (Fig. 11.3, a). Radius vector F defines the position of point 

M  (x ,y ,z), which belongs to the plane.

Geometric sense of coefficients'. x0,y0,z0; xx, у  y,zx; x2,y2,z2 -  coordinates of 

points M0(x0,y0,z0), My(xl,y],Zy), M 2(x2,y2,z2) , through which the plane (11.8) 

passes. Parameters tx, t2 in equation (11.7) define the position of point M(x,y,z),  

which belongs to the plane, e.g. if tx = 0, t2 = 1, then M  coincides with M 2, and if 

ty = 1, t2= 0 -  with My.

Equation of a plane, which passes through three given points'.

F-Fo z " zo 
* i - * o  У 1 - У 0  z i ~ z o

X2 ~ -̂ 0 У 2 ~ У() Z2 ~ Z0

Way of plane representation and geometric sense of coefficients in equation 

(11.9) are the same as in equation (11.8).

Intercept equation of a plane'.

—+ ̂ - + —= 1, Xy*0, yx* 0 ,  Zy*0. (11.10)E yx Z\
Way of representation', plane passes through three given points (я,, 0,0),

= 0, rg
Xj x0 У1 -У 0 Zl ~ Z0 

\  X 2 ~  X 0 У 2 ~ У() Z 2 ~ Z 0 J

-  2. (11.9)

^(0 ,^ ,0 ) и Z x( 0 , 0 , z x) ,  and xx Ф 0, ухФ 0, zx Ф 0 (Fig. 11.3, b).



Geometric sense of coefficients: plane (11.10) cuts off "segments" on 

coordinate axes: xx on abscissa axis, yl on ordinate axis, zl on applicate axis.

Ways of Equation Type Transformation

1. To transform general equation of a plane (11.1) into normalized equation 

(11.3) it is sufficient to divide both parts of general equation by the length of normal

| n | = sj A2 + В2 + C2 (if constant term is negative D < 0) or by opposite quantity

- 1 n | = = -  yj A2 + В2 + C2 (if constant term is nonnegative D> 0 ).

2. To transform general equation of a plane (11.1) to parametric equation 

(11.5) it is necessary to make the following steps:

1) find any solution (jr0 , y0, z0) of equation A-x + В ■ y  + C • z + D = 0, defining

the coordinates of a point M0(x0,y0,z0), which belongs to the plane;

2) find any two linearly independent solutions (a], bx,c\ ), (a2,b2,c2) of 

homogeneous equation A-a + B-b + C-c = Q, defining the coordinates al,bl,cl and 

a2,b2, c2 of direction vectors p1 and p2 of the plane;

3) write parametric equation (11.5).

3. To transform parametric equation into general, it is sufficient to write the 

equation (11.6) and expand the determinant or to find normal as the outer product of 

direction vectors (Section 8.5):

n = [p l,p2] a

a2 Ь2 2̂

Ь1 C1 
b2 2̂

l -
a,

2̂ 2̂
■J +

ax />,
a2 b2

■k

and write general equation of a plane in a form (11.2):

A ■ (x -  x0) + В ■ (у -  y0) + C ■ (z -  z0) = 0.

4. Transformation of general equation of a plane (11.1) into intercept equation 

(11.10) is possible if all coefficients of general equation are nonzero. To do this 

transformation it is necessary to transfer constant term to the right part of equation: 

A-x + В ■ y + C ■ z =-D  and then divide both parts of equation by -D :



- D ' x + Zd  ' у  +  - D ' z =  I' D e n o t i n g  x  =  - D ’ у  = ~ DD’ z  = _ D  ’ W e  w i l 1  g e t

i n t e r c e p t  e q u a t i o n  ( 1 1 . 1 0 ) :  —  +  —  +  —  =  1 .
*i y1 z1

Example 11.2. I n  c o o r d i n a t e  s p a c e  Oxyz ( i n  C a r t e s i a n  c o o r d i n a t e  s y s t e m )  t h e  

f o l l o w i n g  p o i n t s  a r e  g i v e n :  K  ( 2 , 3 , 4 ) ,  L ( 6 ,  -  3 , 4 ) ,  M  ( - 4 , 6 ,  -  4 ) .  F i n d :

a )  g e n e r a l  e q u a t i o n  o f  a  p l a n e ,  w h i c h  c o n t a i n s  t r i a n g l e  K L M ;

b )  i n t e r c e p t  e q u a t i o n  o f  t r i a n g l e  KLM p l a n e ;

c )  p o i n t s  o f  p l a n e  a n d  c o o r d i n a t e  a x e s  i n t e r s e c t i o n .

□  a )  C o m p o s e  t h e  e q u a t i o n  ( 1 1 . 9 ) :

x  -  2 y  -  3 z  -  4 x  -  2  y  -  3  z  -  4

6  -  2 - 3  -  3 4  -  4 =  0  ^ 4  - 6  0

- 4  -  2 6  -  3 - 4  -  4 - 6  3  - 8

B y  t h e  d e t e r m i n a n t  e x p a n s i o n  a n d  s i m i l a r  t e r m  s i m p l i f i c a t i o n  w e  g e t

4 8 - ( x  -  2 )  +  3 2 • ( y  -  3 ) - 2 4 • ( z  -  4 )  =  0  ^  6  • x  +  4  • y  -  3  • z  - 1 2  =  0 .

b )  B y  t r a n s f e r r i n g  t h e  c o n s t a n t  t e r m  o f  g e n e r a l  e q u a t i o n  t o  i t s  r i g h t  p a r t  a n d

x  y  z
d i v i d i n g  b y  1 2 :  ^  +  3  +  — 4  =  1 w e  h a v e  o b t a i n e d  i n t e r c e p t  e q u a t i o n .

c )  B y  t h e  i n t e r c e p t  e q u a t i o n  w e  f i n d  t h a t  t h e  p l a n e  p a s s e s  t h r o u g h  t h e  f o l l o w i n g  

p o i n t s :  X  ( 2 , 0 , 0 ) ,  Y  ( 0 , 3 , 0 ) ,  Z  ( 0 , 0 ,  -  4 )  o n  c o o r d i n a t e  a x e s .  ■

11.1.2. Planes Positional Relationships

C o n s i d e r  t w o  p l a n e s  щ  a n d  n 2 , w h i c h  a r e  d e f i n e d  b y  t h e  f o l l o w i n g  g e n e r a l  

e q u a t i o n s :

щ 1 : A 1 • x  +  B 1 • y  +  C 1 • z  +  D 1 =  0 ;  щ 2 : A 2  • x  +  B 2  • y  +  C 2  • z  +  D 2  =  0 .

I n f o r m a t i o n  a b o u t  p l a n e  p o s i t i o n a l  r e l a t i o n s h i p  c a n  b e  o b t a i n e d  f r o m  t h e  

c o e f f i c i e n t s  i n  t h e i r  e q u a t i o n s  b y  t h e  f o l l o w i n g  c r i t e r i a  o f :

•  p l a n e  p a r a l l e l i s m :

A = A = C l  *  A  .

a 2 B 2 c 2 d 2  ’



A  =  B  =  C  =  Dl -

A  b 2 c 2 d 2 ’

p l a n e  parallelism or equality:

r g

p l a n e  intersection:

r g

'  A B j C l  >

к A B 2 C 2 у

r  A B j C  \  1̂
К A 2 B 2 Ĉ2 у

= 2;

•  p l a n e  perpendicularity:

A  ■ A  +  B  ■ B 2  +  Q  • C 2 =  0 .

I f  p l a n e s  i n t e r s e c t ,  t h e n  t h e  c o o r d i n a t e s  o f  t h e i r  c o m m o n  p o i n t s  c a n  b e  f o u n d  a s  

t h e  s o l u t i o n  o f  t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s :

f  Ay ■ x +  Bx ■ y +  C  ■ z +  Dx =  0 ,

^  A 2  ■ x +  B2 ■ y +  C2 ■ z +  D2  =  0 .

T h i s  s y s t e m  h a s  a n  i n f i n i t e  n u m b e r  o f  s o l u t i o n s ,  w h i c h  f o r m  t h e  p l a n e  i n t e r s e c t i o n  

l i n e .

Example 11.3. D e s c r i b e  t h e  p o s i t i o n a l  r e l a t i o n s h i p  o f  e a c h  p a i r  o f  p l a n e s  

( i n t e r s e c t i o n ,  p a r a l l e l i s m ,  e q u a l i t y ,  p e r p e n d i c u l a r i t y ) :

a )  2 ■  x - y - 4 ■  z  +  3  =  0 ,  - 4 ■  x  +  2 ■  y +  8 ■  z - 6  =  0 ;

b )  2  ■ x  +  3  ■ y +  z -  6  =  0 ,  4  ■ x  +  6  ■ y +  2  ■ z  +  3  =  0 ;

c) 3 ■ x  -  2 ■ y + z +1 = 0, 4 ■ x  + 5 ■ y -  2 ■ z  -1 = 0;

d) 3■ x -2■ y  + z  +1 = 0, 4■ x  + 5■ y  + 2■ z -1  = 0.

□  a) Since Ay =  2, B y = - 1, Cx =  - 4, Dx =  3, A 2 =  - 4, B 2 =  2, C 2 =  8, D 2 =  - 6 and

A = - L = - i ,  A = - 1 ,  C l = z £ = - L, D L = _ L = - i ,  then
A 2 -  4 2 B 2 2 C 2 8 2 D 2 -  6 2

—  =  —  =  —  =  — L  =  — . H e n c e ,  t h e s e  p l a n e s  c o i n c i d e  ( t h e y  a r e  e q u a l )
A 2  B 2  C 2  D 2  2  P



b) Since 4  = 2 ,4  = 3,Q  = 1,Д = - 6 , 4  = 4 , 4  = 6,C2 = 2,D2 = 3 and

—  = — —  = —. —  = -2 , then —  = —  = —  ф . Hence, planes are parallel.4 B2 C2 d 2B2 2 C2 2 D2

c) Since 4 = 3 ,  4  = - 2, Q = l ,  Dx= 1, 4  = 4, 4  = 5, C2 = -2 , D2 = - l ,

then rg
4  4  q

A R C
V ^ 2  JJ2 ^ 2  У

rg
3 -2 1

v4 5 -2 j
= 2. Hence, planes intersect. Since 4  ■A2 +

+ 4  • 4  + Q • C2 = 3 • 4 + (-2) • 5 +1 • (-2) = 0, then planes are perpendicular.

d) Since 4 = 3 ,  4  = -2 , Q = l ,  Dx = 1, 4  = 4, 4  = 5, C2= 2 , D2 = - l ,  to

rg
Л Bt c,'
4 4 Q = rg

4з -2 Г 
4 5 2

= 2. Hence, planes intersect. Since Al -A2 + Bl -B2 +

+Q • C2 = 3 • 4 + (-2) - 5 + l- 2 = 4 ^ 0 , then planes are not perpendicular.

11.1.3. Metric Applications of Plane Equations

Let’s list formulas for segment lengths (distances) and values of angles 

calculation by equations of their forming planes.

Angle between two planes can be determined as angle between their normal 

vectors (on Fig. 11.3 normal vectors of planes and n2 are denoted by nx, n2

accordingly). By this definition we have two adjacent supplementary angles, which 

complement each other to n . In elementary geometry usually the smallest angle is 

chosen from two adjacent angles, i.e. value of angle cp between two planes satisfy the

following condition 0 < cp < -^.



1. Distance d  between point M*(x*,y*,z*) and plane A-x + B -y  + 

+C -z + D = 0 is calculated by the following formula (Fig. 11.4, a)

A-x* + В ■ у* + C • z* + D

< J a 2 +  b 2 + c 2

Figure 11.4

2. Distance between parallel planes Al ■ x + Bl ■ у  + Q • z + Dx = 0 and 

A2-x + B2- у  + C2 ■ z + I)2 = 0 is calculated as distance d] between point 

M 2 (x2 ,y2,z2), which coordinates satisfy the equation A2- x + B2- у  + C2 • z + I)2 = 0, 

and plane Ai • x + Bx • у  + Q • z + Dx = 0 by the following formula (Fig. 11.4, b)

dx = Ax- x2 + Bx- y2+Cl - z2 + Dj

V 4 2 + b ,2 + c ,2

3. Acute angle cp between two planes

711 • Ax- x + Bx - y + Cx - z + Dx = 0 and 71 2 ' 4 2-x+ 5 2,f  + c,2,z + A  = o

is calculated by the following formula

_____  | Al -A2 + B1-B2 + Cl -C2
C O S  ф  — i-----------------------------------  i----------------------------------- ,

V Af + Sf + Q2 -yl A2 + B2 + C2

where nx = Ax • T + Bx ■ j  + Q • к and «2 = A2-T + B2-J + C2-k are normals to planes 

7ij and 7i2 accordingly (Fig. 11.5).

Example 11.4. In coordinate space Oxyz the following vertexes of triangle 

pyramid OABC are given: A(1,3,-1), 5 (2 ,1 ,-2), C(4, 2 ,-6 ). Find:



x -1 y - 3  z - ( - l ) x — \ y - 3 z + 1
points A , В ,C: 2 -1 1-3  - 2 - ( - l ) = 0 1 -2 -1

4 -1 2 -3  - 6 - ( - l ) 3 -1 -5

a) general equation of a plane, which contains side ABC ;

b) distance d between vertex C and side OAB;

c) value of angle cp between sides ABC and OAB .

□  a) By formula (11.9) compose equation of the plane nABC, which passes through

=  0 .

Expanding the determinant by the first row we get

9 - (x - l )  + 2 - (y -3 )  + 5-(z + l) = 0 9-x + 2-y + 5-z-10 = 0.

The required equation is obtained.

b) To find distance d we compose equation of the plane, which passes through 

points О , A , В :

= 0 <̂> x + z = 0.

By the first formula of metric applications for M* = C we have:

1 • 4 + 0 • 2 +1 • (-6) + 0 1 2

x — 0

0
1 z -  0 X У z

1 -0 3 -0 - 1 - 0 = 0 < Z > 1 3 -1
2 - 0 1-0

01<N1 2 1 -2

d =
- 7 Г ^7  i 2 + o 2 + i 2

c) Acute angle cp between planes 9-x + 2-y + 5-z-10 = 0 and x + z = 0 is 

found by the third formula of metric applications:

coscp =
9-1 + 2-0 + 5-1 14

92 + 22 + 52 -Vl2 + 02 + l2 V220 V55'

7 _Consequently, cp = arccos . -

11.2. LINES IN SPACE

11.2.1. Main Types of Line Equations in Space

Direction vector of line is a nonzero vector, which is collinear to the given 

line, i.e. this vector belongs or is parallel to the line. Two lines are called collinear, if 

they are parallel or coincident.



General equation o f  a line in space:

J  A1 ■ x  +  B 1 • y  +  Q  • z  +  D1 =  0 ,  ( A l B 1 Q ^

[  A 2 ■ X  +  B2 ■ y  +  C 2 ■ z  +  D 2 =  °  4 A 2 B2 C2 у

F i g u r e  1 1 . 5

W a y  of representation: l i n e  i s  d e f i n e d  a s  a n  i n t e r s e c t i o n  l i n e  b e t w e e n  t w o  

p l a n e s  ( F i g . 1 1 . 5 ,  a ) :

л 1 : A1 ■ x +  B 1 ■ у  +  C 1 ■ z  +  D 1 =  0 ;  n 2 : A 2 ■ x  +  B 2 ■ у  +  C 2 ■ z  +  D 2 =  0 .

Geometric sense of coefficients: A 1 , B 1 , C 1 a n d  A 2 , B 2 , C 2 a r e  c o o r d i n a t e s  o f  

n o r m a l s  n1 = A 1 ■ i + B1 ■ j  + C1 ■ к a n d  n2 = A2 ■ i + B2 ■ j  + C2 ■ к o f  p l a n e s  щ a n d  n2

a c c o r d i n g l y .  T h e  e q u a l i t y  o f  m a t r i x  r a n g  t o  t w o  i n  ( 1 1 . 1 1 )  d e n o m i n a t e s  t h e  c o n d i t i o n  

o f  n o n c o l l i n e a r i t y  o f  n o r m a l s  ( i t  e q u i v a l e n t  t o  t h e  p l a n e  i n t e r s e c t i o n  c o n d i t i o n ,  

S e c t i o n  1 1 . 1 . 2 ) .

Vector parametric equation o f  a line in space :

T = TO + 1 ■ p , t e  Ж, p  Ф o . ( 1 1 . 1 2 )

Way of representation: l i n e  p a s s e s  t h r o u g h  t h e  p o i n t  M 0 ( x 0 , y 0 , z 0 ) ,  w h i c h  i s  

d e f i n e d  b y  r a d i u s  v e c t o r  T0 , a n d  i s  c o l l i n e a r  t o  d i r e c t i o n  v e c t o r  p  ф o ( F i g . 1 1 . 5 ,  b) .

Geometric sense of parameter t i n  e q u a t i o n  ( 1 1 . 1 2 ) :  v a l u e  o f  t i s  p r o p o r t i o n a l  

t o  t h e  d i s t a n c e  b e t w e e n  i n i t i a l  p o i n t  M 0 a n d  p o i n t  M , w h i c h  i s  d e t e r m i n e d  b y  r a d i u s  

v e c t o r  T .



Physical sense of parameter t : it denotes time of uniform rectilinear motion of 

point M . If t = 0, then point M  coincides with the initial point M0, increase of t 

denominates motion with the direction defined by vector p .

Parametric equation of a line in space-.

x = x0 + a • t ,
< y  = yo+b.t,  /бМ, а2 + Ь2 + с2Ф0. (11.13)

z = z0+c-t,

Way of  representation: line passes through the point M0(x0,y0,z0) and is 

collinear to vector p  = a- i + b• j  +c-k  (Fig. 11.7, b).

Geometric sense of coefficients-, coefficients a,b,c  are coordinates of direction 

vector p  = a-i +b- j  +c-k  of a line and x0, y0, z0 are coordinates of the point 

M 0(x0,y0,z0), which belongs to the line. Parameter t has the same meaning as in 

equation (11.12).

Note that the equation (11.13) is a coordinate form of the equation (11.12).

Canonical equation of a line in space.

x - y L=y - y 1 = z - z 1 ' а2 + Ь2 + с2Ф 0. (11.14)
a b c

Way of representation: line passes through the point M0(x0,y0,z0) and it is 

collinear to vector p = a- i +b- j  +c-k  (Fig. 11.7, b).

Geometric sense of coefficients-, coefficients a,b,c  are coordinates of direction 

vector p = a - i + b - j + c - k  of a line and x0, y0, z0 are coordinates of the point 

M 0(x0,y0,z0), which belongs to the line. Parameter t has the same meaning as in 

previous equations (11.12), (11.13).

One or two from three denominators of fractions in (11.14) can be equal to 

zero, at that it is considered that the according numerator is equal to zero, e.g:

a) —o~~̂ = () = ----- ~ -  equations of a line, which is parallel to the

, • . . . Г x  =  X , ,applicate axis (Fig. 11.6, a), i.e.



b) equation of a line, which is parallel to coordinateУ -У о _ 2 - г 0 
a b 0

plane Oxy (Fig. 11.6, b), i.e. x - x 0 _ y - y 0 
a b

Affine equation o f a line, which passes through two given points, in space.

7 = (\- t)-70+t-7x, feM. (11.15)

Equation (11.15) can be written in coordinate form:

X  = (1 -  t) • x0 + t • X j  ,

< у  = (1 -  0  • y0 +1 • y1, t e R .
z = ( l - t ) - z 0+t-zl ,

Way of representation: line passes through two given points M() (x0, y(j, z(j) and 

M f x x,yx,zx) , which are defined by two radius vectors 70 and 7X accordingly 

(Fig. 11.6, c). Radius vector 7  defines the location of point M (x,y ,z) ,  which 

belongs to the line.

Geometric sense of coefficients-. x0, y(), z0 and x,, yx, zx are coordinates of 

points M0(x0,y0,z0) and M f x x,yx,zx), through which the line passes (11.15). 

Parameter t in equation (11.15) defines the location of point M(x,y,z),  which 

belongs to the line, e.g. if t = 0 then point M  coincides with the point M 0 (7 = 70), 

and if t = 1 -  with the point M x (7 = 7X).

Equation of a line, which passes through two given points M 0( x 0, y 0, z 0) and 

M j  ( x t , y x, z,) in space:



* - * о  ^  У - У о  _  z ~ z o 

*i“ *o ух- у 0 zx- z 0

Way of  representation: line passes through two given points M0(x0,y0,z0) and 

M f x x,yx,zx) (Fig. 11.6, c).

Geometric sense of coefficients'. x0,y0,z0 and xl,yl ,zl are coordinates of 

points A/0(x0,y0,z0) and M l(xl,yl,z1) , through which the line passes (11.16). As in

canonical equation, one or two from three denominators of fractions in (11.16) can be 

equal to zero, at that it is considered that the according numerator is equal to zero.

Ways of Equation Type Transformation

1. To transform general equation of a line in space (11.11) into canonical 

equation (11.14) it is necessary to make the following steps:

1) find any solution (x0,y0,z0) of the system
Ax • x + Bx • у  + Cx' z + Dx — 0, 
A.j ■ x + В2 ' у  + Cj ' z + Z)2 = 0,

thus defining coordinates of point M0(x0,y0,z0), which belongs to the line;

2) find any nonzero solution (a,b,c) of homogeneous system
f Д • a + Bx ■ b + Q • c = 0, _
{ thus defining coordinates a,b,c  of direction vector/?, or
( •  a + В 2 ■ b + C 2 • c = 0,

find direction vector p  as outer product of normals nx- A x-i + Bx ■ j  + Q • к , 
n2 = A2 ■ i + B2 • j  + C2 ■ k of given planes:

p = [nx,n2 ] = a • i +b- j  +c-k
i j к

A A Q
A A c 2

3) write canonical equation (11.14).

2. To transform canonical equation into general one, it is sufficient to write the 

double equality (11.14) as a system

x - x 0 _ y - y 0 
a b ’

У - У о  = z ~ z o 
b c

and reduce similar terms.



3. To transform canonical equation (11.14) into parametric equation (11.13), it 

is necessary to equate each fraction in equation (11.14) to parameter t and write 

obtained equalities as a system (11.13):

_ T-To 
a b

о
x = x0 + a-t,

' y = y0+b-t, t e  M. 
Z = Zq + c • t ,

Example 11.5. In coordinate space Oxyz the following vertexes of triangle are 

given: .4(1,2,3), 5(3,0,2), C(7,4,6) (fig. 11.7). Find:

a) general equation of a line, which contains altitude AH of triangle;

b) canonical equation of a line, which contains altitude AH of triangle;

c) general equation of a line, which contains bisectrix AL of triangle;

d) parametric equation of a line, which contains median AM  of triangle.

Figure 11.7

□  a) Line AH is an intersection line of two planes: щ of triangle ABC and тг2,

which passes through the point A and which is perpendicular to vector BC 

(Fig. 11.7, a). By the formula (11.9) compose the equation of the plane щ, which 

passes through the points А , В ,C :

= 0 <=> x + 3 - y - 4 - z  + 5 = 0.
x — \ y - 2 2 - 3 jc —1 y - 2 z - 3
3-1 0 - 2 2 - 3 = 2 -2 -1
7-1 4 - 2 6 - 3 6 2 3

By the formula (11.2) compose the equation of the plane n2, which passes through 

the point A and which is perpendicular to vector 

]jC = ( 7 - 3 ) T  + ( 4 - 0 ) - 7  + (6 -2 ) - j t=  = 4 - 7  + 4 - J  + 4 ■£:



4 - ( x - l )  + 4 - ( y - 2 )  + 4 - ( z -3 )  = 0 x + y + z -  6 = 0.

Consequently, general equation (11.11) of the line AH has the following view:

j  x + 3 - y - 4 - z  + 5 = 0,
[ x + y  + z -  6 = 0.

b) General equation a the line AH was obtained in "a". To transform general 

equation into canonical one it is necessary to:

• find any solution (x0,y0,z0) of the system, e.g. x0= l ,  y0=2, z0= 3 

(coordinates of the vertex A(l, 2,3));

• find direction vector p  of the line as outer product of normals

Wj = 1 • / + 3 • j  -A -k  , n2=\-i +1 • j  +1 • к of the given planes:

p  = [nl,n2\ =
T J  k 
1 3 -4 
1 1 1

= 7 • / -  5 • j  -  2 ■ к ;

write canonical equation (11.14): x — 1 y - 2  z - 3
7 -5 -2

c) First compose canonical equation of the line A L . To do this we should find 

direction vector / of this line (Fig. 11.7, b). Taking into account, that diagonal of 

rhombus is a bisectrix, we get l =b +c , where b and c are unit vectors with the

same direction as vectors AB and AC accordingly. Find 

AB = 2 - T - 2 - j - \ - k , AB = 3. r  AB 2 — 2 — 1 —b =   = —• i ----- /  к ;
3 3 3AB

AC = 6 ■ i +2- j  + 3-k AC
„ _ AC 6 -  2 -  3 -

= 7, c =   = —• / + — • / + — -k;
7 7 7

/ = /> + c = (2 -  2 -  1 л (6 -  2 - 3 - ^ 1— i — J ~~ ■k + — / H--- j + — ■ к
u 3 3 J 1 v 7 1 J

32 — 8 — 2 -----г -------/ + -----к .
21 21 21

Compose canonical equation of the line ЛТ: x - l _ y - 2 _ z - 3
32
21

_8_
21

_2_
21

Writing double equality as a system, we get general equation of the line AL :



х  - 1 = y  -  2
32 - 8
21

y  -  2 z -  3
8 = 2

"2T 21

&
х + 4 ■ y -  9 = 0, 
y + 4 ■ z -14 = 0.

d) Find coordinates of the middle point M  of BC : M (5,2,4). Compose

equation (11.16) of the line AM  (Fig.11.7, c):

х -1  y -  2 z -  3 х -1 y -  2 z -  3
5 -Г  = 2 - 2  = 4 - 3  &  ~T~ = 0 = ~ T .

Transfer the obtained equation into parametric one, by equating each fraction 

to parameter t :

х -1  y -  2 z -  3
~^T=  0 = ~ T  =

&

х = 1 + 4■ t ,
< y = 2, t e Ж. ■ 

z = 3 +1 ■ t ,

11.2.2. Positional Relationships of Lines in Space

Consider two lines l1 and l2 specified by their canonical equations:

: х -  х1 y -  y1 z -  z 1 l : х -  х2  y -  y2 z -  z 2

a1 b1 c1 a2 b2 c2

where х1, y1, z1 and х2, y2, z2 are coordinates of points M1(х1, y1, z1) and 

M  2( х2, y2, z2), which belong to lines l1 and l2 accordingly; a1, b1, с1 and a2, b2, c2 are 

coordinates of direction vectors p1 = a1 ■ i + b1 ■ j  + c1 ■ к and p2 = a2 ■ i + b2 ■ j  + c2 ■ к 

of these lines (Fig. 11.8).

Figure 11.8



Information about line positional relationship can be obtained from the number 

of linearly independent rows of matrix

( 1 1 . 1 7 )

*1  * * 2 У 1 -  У 2 z 1 -  z

a1 b 1 c 1

a 2 b 2 c 2

and by the following criteria: 

• skew lines:

rg
*1 *2 У1 У 2 Z1 Z2

a b 1

a 2 b 2 C2

=  3 ;

1 parallel lines: 

f
rg

equal lines:

a 1 b1 c1

V a 2 b 2 C2 J

=1 and rg 4  -  * 2  У1 -  У 2 Z 1 -  Z 2 ^

v  a 1 b 1

=  2 ;

-1 J

4  -  * 2  У1 -  У 2 z 1 -  Z 2 ^

rg a

v  a 2

c

collinear lines:

rg
a 1 b 1 c 1

v  a 2 b 2 C2 J

"2 J

= 1 ;

intersecting lines:

rg

1 perpendicular lines:

*1 **2 У 1 -  У 2 z 1 -  z

a1 b 1 c 1

a 2 b 2 c 2

rg
a 1 b 1 c 1

V a 2 b 2 c 2 J

a 1 • a 2 +  b 1 • b 2 +  c 1 • c 2 =  0 .

If lines intersect, then the coordinates of intersection point can be found as the 

solution of the following system of equations:



x - x L_ y - y L_ z - z l
<2, К

x - x 2 У~ У2 z -  Z„

<2o b2 c2

Example 11.6. Find information about positional relationship of each pair of 

lines (are they skew, intersecting, parallel, equal, perpendicular, if they are 

intersecting find their mutual point):
„ 1  . . Л  _ о „  , 1 . . 1 _ , о

a)

b)

c)

d)

2 -3 4 ’ 4 0 -2 ’

x — \ y - 2  _ z - 3 x + 1 y - l _ z + 2 _
2 -3 4 ’ -4  ” 6 -8  ’

jc — 3 y + 2 z - 7 x + 3 . ^ - 7 . z + 5
2 -3 '  4 ’ -4 6 -8

x -  3 у + 2 z - 7 x -  2 y + 2 z - 5
2 - 3  4 5 -6 10

□  a) By the coefficients of line equations we compose the matrix (11.17):

4  “ *2 Л -  2̂ Z1~Z2' (\ -(-1 ) 2 -1  3 - ( -2 )N ^2 1 5
<2j b l C1 = 2 -3 4 = 2 -3 4

V a2 Ь2 C2 у 4 0 -2  y V4 0 -2y

Since rg
2 1 5
2 - 3  4
4 0 - 2

= 3, the given lines are skew. As

al -a2 + bl -b2 + cl -c2 = 2-A + (-3) • 0 + 4 • (-2) = 0, they are perpendicular.

b) By the coefficients of line equations we compose the matrix (11.17):

4 “ *2 ^1-^2 Zl - V (\ -(-1 ) 2 -1 3 - ( -2 ) ' '  2 1 5"|

bx z 2 -3 4 = 2 -3 4

у a2 Ь2 C2 у -4 6 -8  7 v-4 6 -8 ,

Since rg
Ka2

r2 1 5Л

a- r
1 — rg

\ ® 2  Ь 2 ^ 2  J
2 -3 4 ^

-4 6 -8
1 and rg 4  -  *2 33 -  ^ 2  ^  ^

V a i ч  У

rg : 2, the lines are parallel.



c) By the coefficients of line equations we compose the matrix (11.17)

Ч - х 2 У \  -  У 2 Z 1 ~ Z 2 ' "3 - ( - 3 ) - 2 - 7  7 -  (-5)" " 6 -9 12"
ax

b i C1 - 2 - 3  4 = 2 -3 4

к  a i b 2 C2 , - 4 6 -8 ,-4 6 -8 ,

Since rg
(  6 -9 12 

-3 4
6 - 8

\

= 1, the lines are equal.

v 4 °

d) By the coefficients of line equations we compose the matrix (11.17):
X N / - - _ ~ _ x
4  ~  * 2  У \ ~  У  2 2 1 ~ 2 2 Л "3-2 - 2 - ( - 2 ) 7 - 5 " a 0 2"

ax Cl
= 2 -3 4 = 2 -3 4

v  a 2 Ь 2 C 2 , v  5
- 6

1 0  , V 5
- 6

1 0 ,

Since rg
1 0 2"

"2 -3 4"
rg 2 -3 4 = rg

,5 -6  10,
5V -6 102

=  2 the lines intersect. Find the coordinates

of intersection point as the

x- - 3 у + 2
2

x - 2  _ у
-3
+ 2

z - 7 -3-x + 9 = 2-y + 4, 3-x + 2-y = 5,

4 ’ «
4-y + 8 = - 3 - z  + 21,

<=> \
4-y + 3-z = 13,

z - 5 -6-x + 12 = 5-y + 10, 6-x + 5-y = 2,
10 ’ 10 • у + 20 = -  6 • z + 30, 5-y + 3-z = 5.

Subtracting the second equation from the last one we obtain y = -8 . Substituting 

у — —8 in the first two equations we find x = ! , z = 15. Hence, the only common 

point of the lines has coordinates x = 7, y = -  8, z = 15. ■

11.2.3. Positional Relationships of Line and Plane

Consider line / and plane n specified by the following equations:

,  x -  xn v  -  V 0  Z  -  Z 0 A/: -------  = - — H  =---- 2-; n: A-x + В ■ у + C • z  + D = 0,
a b c

i.e. line / passes through the point M0(x0,y0,z0) and is collinear to vector 

p = a- i +b • j  +c-k  and plane n is perpendicular to vector n = A - i +



+ B • j  + C • k ( F i g .  1 1 . 9 ) .  I n f o r m a t i o n  a b o u t  p o s i t i o n a l  r e l a t i o n s h i p  o f  l i n e  a n d  p l a n e  

c a n  b e  o b t a i n e d  f r o m  s c a l a r  p r o d u c t  o f  v e c t o r s  ( p, n )  =  a • A + b • B + c • C a n d  b y  t h e  

f o l l o w i n g  c r i t e r i a :

F i g u r e  1 1 . 9

•  intersection o f  a  l i n e  l a n d  a  p l a n e  n  ( F i g .  1 1 . 9 ,  a):

a • A +  b • B +  c • C Ф  0 ;

1 perpendicularity o f  a  l i n e  l a n d  a  p l a n e  n :

r g
a b c 
A B C

= 1 ;

•  parallelism o f  a  l i n e  l a n d  a  p l a n e  n  ( F i g .  1 1 . 9 ,  b ) :

J  a • A +  b • B +  c • C =  0 ,

^  A • x q +  B • y Q +  C • z q +  D Ф  0 ;

•  belonging o f  a  l i n e  l t o  a  p l a n e  n  ( F i g .  1 1 . 9 ,  c ) :

J  a • A +  b • B +  c • C =  0 ,

^  A • x q +  B • yo +  C • z q +  D =  0 .

I n  c a s e  o f  i n t e r s e c t i o n  i t  i s  c o n v e n i e n t  t o  u s e  p a r a m e t r i c  e q u a t i o n  o f  a  l i n e  t o  

f i n d  c o o r d i n a t e s  o f  a  c o m m o n  p o i n t .  S u b s t i t u t i n g  t h e  f o l l o w i n g  e x p r e s s i o n s

x  =  x 0 +  a • t , y =  y 0 +  b • t , z  =  z 0 +  c • t ( 1 1 . 1 8 )

i n  e q u a t i o n  o f  a  p l a n e  A • x +  B • y +  C • z +  D =  0 ,  i t  i s  p o s s i b l e  t o  c a l c u l a t e  v a l u e  o f  

p a r a m e t e r  t* f o r  i n t e r s e c t i o n  p o i n t ,  a n d  t h e n  t h e  c o o r d i n a t e s  o f  t h e  r e q u i r e d  p o i n t  b y  

f o r m u l a  ( 1 1 . 1 8 )  a s s u m i n g  t =  t *.

2 1 0



Example 11.7. Get information about positional relationship of each pair of 

line and plane (are they intersecting, perpendicular, parallel, if the line belongs to a 

plane, in case of intersection find mutual point):

a)

b)

c)

d)

x -1 У - 2 z + 3
1 -6 4 ’

x -1 У -2 z + 3
1 -6 4 ’

x — 1 F - 2 z + 3
1 -3 4 ’

x — 1 у + 2 z + 3
1 -3 -4 ’

2 • x + 3 • у  + 4 • z + 4 = 0; 

2-x + 3-y + 4-z + l = 0;

2 • x + 3 • у  + 4 • z -  5 = 0; 

2 - x - 6 - y - 8 - z  + 14 = 0.

□  a) By the coefficients in equations define a = l, b = - 6, c = 4, x0=l, y0=2. 

z0 = - 3, A = 2, В = 3, C = 4, D = 4. Since

a-A + b-B + c-C = 0, f l-2 + (-6)-3 + 4-4 = 0,
A • xq + В • Уд + С • Zq + D — 0, 2 • 1 + 3 • 2 + 4 • (-3) + 4 = 0,

the line belongs to the plane.

b) By the coefficients in equations define <2 = 1, b = - 6, c = 4, x0=l, y0= 2, 

z0=-3, A = 2, B = 3 ,C  = 4, D = 1. Since

J a-A + b-B + c-C = 0, J l-2 + (-6)-3 + 4-4 = 0,
{A -x0 + B -y0 + C-z0 + D *  0, ^  [2-1 + 3- 2 + 4- (-3) + 1^0,

the line is parallel to the plane.

c) By the coefficients in equations define <2 = 1, b = - 3, c = 4, x0 = 1, y0=2,  

z0 = -3 , /4 = 2, B = 3, C = 4, D = -5 . Since

a-/4 + Z>-S + c - C ^ 0  «  1 • 2 + (-3) • 3 + 4 • 4 ^ 0.

the line intersects the plane. Since rg
'1 -3  4Л

= 2 5 6 1 , the line is not perpendicular
2 3 4y

to the plane. Find the coordinates of intersection point. Substituting x = 1 +1 • / , 

у = 2 - 3 - 1, z = -3 + 4 - t , in plane equation we get

2-(l + l -0  + 3 - (2 -3 -0  + 4-(-3 + 4 - 0 - 5  = 0 <=> f  = 1.



Then, coordinates of the common point are x = \ + \-t* =2, y = 2-3-t* = - \ ,  

z = -3 + 4 • t* = 1.

d) By the coefficients in equations define <2 = 1, b = - 3, c = - 4, x0=l,  

y 0 = - 2, z0 = -3 ,  A = 2, B = - 6 ,  C = -8 , D = 14. Since

П  -3 -4"\

the line is perpendicular to the plane. Find the coordinates of intersection point. 

Substituting x = \ + \ - t , y = - 2 - 3 - t , z = -3 -  4 • t in plane equation we get

2 -(1 + 1 - t ) -6  - ( -2 -3  - 0 - 8 -  ( - 3 - 4 - 0  + 14 = 0 t* = - 1.

Then, coordinates of the common point are x = 1 +1 • t* = 0, у  = -2  -  3 • t* = 1, 

z = -3-4- t*  = !.■

11.2.4. Metric Applications of Line Equations in Space

Angle between a line l and a plane ж is defined as an angle between a line / 

and its orthogonal projection lproj to a plane (Fig. 11.10, a). From two adjacent angles

cp and cp' usually chose the smallest one, i.e. 0<cp<-^-. If line / is perpendicular to 

plane (its orthogonal projection is a point), then angle equals to -j.

Figure 11.10

Angle between lines is defined as an angle between their direction vectors 

(Fig. 11.10, b).

Distance between skew lines is the length of their mutual perpendicular 

(Fig.l 1.10, c), i.e. the smallest distance between the points of these lines.



1. Distance d from point Ml(xl,yl5zl) to line 

(Fig.11.11, a) is calculated by the following formula

x  -  x 0  y  -  У о  Z  -  Z 0

a

J-
! 1

0^ 4
; 1

4
; О

2

+ У 1 -  У 0  Z 1 -  Z 0
2

+
x1 x o Z 1 Z o

a b b c a c
d

yj a2 + b2 2 2 + c2

M  2 ( X2,

a b

Figure 11.11

By this formula it is also possible to find distance between two parallel lines

x  -  x o _ У -  У о _  Z -  z 0 and
a c

x -  x  =  y -  У1 =  z -  zx 
a 1 b 1 c 1

coordinates of which direction

, a b c —. . . . .  .vectors are proportional: — = — = — (Fig. 11.11, a ).
a 1 b 1 c 1 2

2. Distance d between skew lines (Fig. 11.11, b )

x  -  x 1 =  У  -  У 1 =  Z  -  Z 1 a n d  x  -  x 2  =  У  -  У 2  =  Z  -  Z 2

a 1 b 1 a 2 b 2 c 2

is calculated by the following formula: d =  ̂ ,̂
I [ p1, Р2 Ц

x 2 x 1 У 2 У 1 Z 2 Z 1 i j k
where (m , p 1, p 2 ) = a 1 b 1 c 1 ^  0 , [p^ p i  ]  = a1 b1 c1

a 2 b 2 c 2 a2 b2 c2

are

compositional and outer products of vectors m = ( x 2 -  x 1)  • i +

+  ( У 2  -  У 1 )  • 1  + ( Z 2 -  Z 1)  • k , p 1 = a1 • T + b 1 • 1  + c 1 • k , p 2 = a2 • T + b 2 • 1  + c 2 • k  .



3. Angle cp between two lines

*-■*!_ У~Ух _ Z-Z -̂  and * “ *2 У -У  2 Z~ Z2
a, a~

is calculated by the following formula

COS(p =
ал • a2 + b} ■ b2 + c] ■ c2

yj a2 + b2 + cf -yj al+b2 + c\

x - x 0 y - y 0 z ~ zo4. Angle ф between line
a b c

A-x +B • y + C • z + D = 0 is calculated by the following formula

a-A + b-B + c-C I
sm9 =

yja2 +b2 + c2 ■yjA2 + B2+C2 '

and plane

Example 11.8. In coordinate space Oxyz (in Cartesian coordinate system) the

following vertexes of triangle are given: ^4(1,2,3), £ (  3,0,2), C(7,4,6) (Fig. 11.7). 

Find:

a) equation of the line B C ;

b) altitude h of the triangle, dropped to the side B C ;

c) distance d from the line BC and the abscissa axis;

d) value of acute angle ф between these lines;

e) value of angle ip between the abscissa axis and the plane of triangle ABC. 

□  a) Compose the equation (11.16) of a line, which passes through the points 

£(3,0,2), C(7,4,6):

x -3  y - 0 z - 2  ^  x - 3  _ у  z - 2  ^  x - 3  _ у  _ z - 2  
7 - 3 _ 4 - 0  _ 6 - 2  4 ~ 4 ~ 4 1 _ 1~  1

b) Required altitude h is found by the first formula of metric applications, 

assuming x0 = 3, y0 = 0, z0 = 2, x, = 1, yx = 2, Zj = 3, a = b = c = 1:

h

- 2 2
2

2 1
2

- 2 1

1 1
+

1 1

+
1 1 у/  16 + 1 + 9 _ yp26

7 зVP+p+i2



X у z
с) Canonical equation of the abscissa axis has the following form — = — = —,

since the axis passes through the point 0(0,0,0), and i is its direction vector.

jc 3 z r2.
Canonical equation of the line BC was obtained in "a": —----= — = ------ .

I l l

Assuming in = OB = (3-0)•  / + (0-0) •  j  + (2 -0) •  к = 3• / + 0• j  + 2 • к , pl =l-i  + 

+0 • J  + 0 • к , p2 = 1 • T +1 • J  +1 • к , by the second formula of metric applications:

= 0 • i -1  • j  +1 • к ,
3 0 2 i j  к

(m,pl,p2) = 1 0 0 = 2, [p,,p2\ = 1 0 0
1 1 1 1 1 1

d = \(m,Pi,P2)\
= лД-

\[Pi>P2]\ ■sj 0 2 + (- l )2 + \2

d) Acute angle cp is obtained by the third formula of metric applications:

coscp (Pi,P2) M  + 0-1 + 0-1

Pi\-\P2 J  l2 + 02 + 02 J  12 + 12 + 12

I 1
i.e. 0  = arccos—j=

Уз л/3

e) Equation of a plane 7г15 which passes through the points A , B , C , was 

obtained in example 11.5 "a": x + 3- y - 4 - z  + 5 = 0. Acute angle v\t between the

X V zabscissa axis — = — = — and the plane x + 3- y -  4- z + 5 = 0 is obtained by the fourth 
1 0  0

formula of metric applications:

I a-A + b-B + c-C
smv|/

1 • 1 + 0 • 3 + 0 - (— 4) |

i.e. v|/ = arcsm

yja2 + b2 + c2 ■yjA2 + B2 + C2 y]\2 + 02 + 02 -у/12 + 32 + (-4 )2 V26 ’

1 .
V26 '



11.3.1. Classification of Quadric Surfaces

Algebraic surface o f the second order (quadric surface) is a locus of points in 

space, which can be represented in some affine coordinate system Oxyz by the 

following equation

an -x2 + a22- y 2 + a33-z2 + 2-an -x- y  + 2-al3-x-z+ 2-a23- y - z  +

+2 • ax ■ x + 2  • a2 • у  + 2  • a3 • z + a0 = 0 ,

where the leading coefficients an , al2, al3, a22, a23, a33 are not all equal to zero 

simultaneously. For any quadric surface there exists a rectangular coordinate system 

Oxyz, in which the equation has the simplest (<canonical) view. This system is called 

canonical, and equation is also called canonical.

Canonical Equations of Quadric Surfaces

2 2 2 X ' у  z1) —г+ ̂ -г + —г = 1 -  ellipsoid equation;
a b c

2 2 2 
x V , z

2 ) — + Аг + — = - 1  -  imaginary ellipsoid equation;
a b c

2 2 2 
x  V , z3) — + Ar + — = 0 -  imaginary cone equation;
a b c

2 2 2 X V  z4) — + ̂ -7- — -  = 1 -  one-sheet hyperboloid equation;
a b c

2 2 2 X V  z5) —z + ^-y — 7  = -1  -  two-sheet hyperboloid equation;
a b c

2 2 2 X V  z
6 ) — + 2 ----- 7  = 0  -  cone equation;

a b c

X
у

У



2 2 
x , y7) —  + 2— = 2 • z - elliptic paraboloid equation;
a b2

2 2 x y8) —  -2— = 2 • z - hyperbolic paraboloid equation;
a 2 b2

2 2 X y9) —  + 2—  = 1 - elliptic cylinder equation;
a 2 b

£ h

2 2 X , y10) —2 + 2— = -1 - imaginary elliptic cylinder equation;
a 2 b2 X c, i У

2 2 X , y11) —r + 2— = 0 - pair of imaginary planes equation;
a b

2 2 X y12) —  — - = 1 - hyperbolic cylinder equation;
a 2 b2

2 2 X y13) —  - 2—  = 0 - pair of intersecting planes equation;
a b

Гг' rlll
Ijy

14) y 2 = 2 • p  • x - parabolic cylinder equation;

15) y 2 - b2 = 0 - pair of parallel planes equation;
17

16) y 2 + b2 = 0- pair of imaginary parallel planes equation; •Î Z~ i  .  ■" i

• X^

17) y 2 = 0 - pair of equal planes equation.

In equations a > 0, b > 0, c > 0, p  > 0 and a > b > с in equations 1-3; a > b in 
equations 4-7, 9-11.

z

z

z

DE
EP

*



Ellipsoid is a surface, which is defined in some rectangular coordinate system 

Oxyz by the following canonical equation

—  z l  £ l = i
a2 b2 c2 ~

(11.19)

where a , b,c are positive parameters, which satisfy the inequalities a>b>c.

If a point M (x,y ,z)  belongs to an ellipsoid (11.19), then coordinates

(±x,± y,± z ) for any combination of signs also satisfy the equation (11.19). It is the

reason why ellipsoid is symmetric relative to coordinate planes, coordinate axes and 

the coordinate origin. The origin of coordinates is called a center of ellipsoid. Six 

points (±c/,0,0), (0,±&,0), (0,0,±c) of intersection of ellipsoid and coordinate

axes are called its vertexes, and three segments of coordinate axes, which connect its 

vertexes are called axes of ellipsoid. Axes of ellipsoid, which belong to coordinate 

axes O x ,  O y ,  O z ,  have lengths 2 • a , 2 • b , 2 • c accordingly. If a> b> c,  then the

number a is called semi-major axis, number b -  semi-mean axis, number c -  semi­

minor axis of ellipsoid. If semi-axes do not satisfy the conditions a> b> c,  then the 

equations (11.19) are not canonical. However, by renaming of the unknowns it is 

always possible to make the inequalities a>b>c  correct.

Plane sections give an opportunity to get a rough idea about the form of an 

ellipsoid (Fig. 11.12, a). , e.g. assuming z = 0 in equation (11.19), we get the

г2 Уequation ^  + ̂  
a b

= 1 of an intersection line of ellipsoid and coordinate plane Oxy.

This equation on plane Oxy defines an ellipse (Section 10.2.2). Intersection lines of 

ellipsoid with other coordinate planes are also ellipses. They are called the principal 

profiles (principal ellipses) of ellipsoid.

Planes x = ±a, y  = ±b, z = ±c define in space principal rectangular

parallelepiped, inside which an ellipsoid is situated (Fig. 11.12, b). Sides of the 

parallelepiped touch ellipsoid in its vertexes.



z

Figure 11.12

Ellipsoid, which semi-axes are pairwise different (a > b > c ), is called three- 

axial (or general). Ellipsoid with two equal semi-axes is called ellipsoid of 

revolution, e.g. if a = b, then such surface can be obtained by the rotation of ellipse

= 1 (which is defined in plane Oyz) around axis Oz. If all semi-axes of

ellipsoid are equal (a = b = c = R), then it represents a sphere x2 + y 2 + z 2 = R2 of

radius R .

11.3.3. Hyperboloids

One-sheet hyperboloid is a surface, which is defined in some Cartesian 

coordinate system Oxyz by the following canonical equation
2 2 2

^  + ̂ - ^  = 1
-2 b2 ~2

( 11.20)
a" o~ c~

Two-sheet hyperboloid is a surface, which is defined in some Cartesian 

coordinate system Oxyz by the following canonical equations

a2 b2 c2 ~ '
( 11.21)

In equations (11.20), (11.21) a , b,c are positive parameters (a > b ), which 

specify hyperboloid.

The origin of coordinates is called center of hyperboloid. Points of intersection 

of hyperboloid and coordinate axes are called its vertexes. These are four points of

219



intersection (±<2 ,0,0), (0,±6,0) for one-sheet hyperboloid (11.20) and two points 

(0,0,±c) for two-sheet hyperboloid (11.21). Three segments of coordinate axes,

which connect hyperboloid vertexes are called axes of hyperboloid. Hyperboloid 

axes, which belong to coordinate axes Ox,Oy, are called lateral axes of

hyperboloids, and axis, which belongs to applicate axis Oz, -  longitudinal axis of 

hyperboloid. Numbers a , b, c , which are equal to a half of axis length, are called 

semi-axes of hyperboloid.

Plane sections give an opportunity to get a rough idea about the form of an 

one-sheet hyperboloid, e.g. assuming z = 0 in equation (11.20), we get equation

2 v2^-j + ̂ ~Y = \ of an intersection line of one-sheet hyperboloid and coordinate plane
a b

Oxy. This equation on plane Oxy defines ellipse (Section 10.2.2), which is called 

throat ellipse. Intersection lines of a one-sheet hyperboloid and other coordinate 

planes are hyperbolas. They are called principal hyperbolas, e.g. assuming x = 0 we

get principal hyperbola У_
b2

2
■̂ y = 1 and assuming y = 0
c

principal hyperbola

2  2
X _____ Z  _ i

2 2 1 '  a c

One-sheet hyperboloid can be expressed as a surface, that is formed by 

ellipses, which vertexes are situated on principal hyperbolas (Fig. 11.13, a). Section 

of one-sheet hyperboloid with a plane, which is parallel to applicate axis and which 

has the only common point with the throat ellipse (i.e. which touches it), is a pair of 

lines, which intersect in a tangency point, e.g. assuming x = ±a in equation (11.20),

V 72we get equation ^-y-^y = 0 of two intersection lines (Fig. 11.13, a).
b c

Plane sections give an opportunity to get a rough idea about the form of an 

two-sheet hyperboloid. Sections of a two-sheet hyperboloid with coordinate planes 

Oyz and Oxz are hyperbolas (principal hyperbolas) and with planes, which are 

parallel to the plane Oxy are ellipses. Two-sheet hyperboloid can be expressed as a



surface, that is formed by ellipses, which vertexes lie on principal hyperbolas 

(Fig. 11.13, b).

Hyperbola

a b c

Figure 11.13

Planes x = ±a, y  = ±b, z = ±c define in space principal rectangular 

parallelepiped. Two sides (z = ±e)  of parallelepiped touch two-sheet hyperboloid in 

its vertexes (Fig. 11.13, c).

Hyperboloid with different latitude axes ( a^b) ,  is called three-axial (or 

general). Hyperboloid with equal latitude axes (a = b) is called hyperboloid of 

revolution. One-sheet and two-sheet hyperboloids can be obtained by the rotation of
2 о 2 оу _2 у* 2

hyperbola ^ - - - ^ -  = 1 or conjugate hyperbola = -1 accordingly around the
b e  b e

axis Oz (Section 10.2.3).

Cone is a surface, which is defined in some Cartesian coordinate system Oxyz 

by the following canonical equation

where a , b,c are positive parameters (a > b . \  which specify cone.

The origin of coordinates is called the center of cone (fig. 11.14), point О -  

vertex of cone (11.22), and any ray O M , which belongs to the cone, -  its generator.

11.3.4. Cones

( 11.22)



Plane sections give an opportunity to get a rough idea about the form of a cone, 

e.g. sections of a cone with coordinate planes Oxz, Oyz are pairs of intersecting

2 2 y *  2
lines, which satisfy the planes equations £ - - Z — = Q (for y = 0) and Аг--^т = 0

a c b c

(for x = 0) accordingly. Sections of cone with planes parallel to the plane Oxy, are 

ellipses. Cone can be expressed as a surface, that is formed by ellipses, which centers 

lie on the applicate axis and which vertexes belong to coordinate planes Oxz and 

Oyz (Fig. 11.14).

Figure 11.14

If a = b, then all sections of cone by planes z = h ( h ^  0) are circumference. 

Such cone is called right circular cone. It can be obtained by the rotation of a line

z = -C • у (generator) around the applicate axis.

11.3.5. Paraboloids

Elliptic paraboloid is a surface, which is determined in some Cartesian 

coordinate system Oxyz by the following canonical equation

~T + TT = 2 ' Z- (11.23)
a b



Hyperbolic paraboloid is a surface, which is defined in some Cartesian 

coordinate system Oxyz by the following canonical equation

4 - £  = 2 ‘*. (П-24)

In equations (11.23), (11.24) a are b positive parameters (for elliptic 

paraboloid a > b ), which specify paraboloids.

The origin of coordinates is called a vertex of each paraboloid ((11.23) or 

(11.24)).

Plane sections give an opportunity to get a rough idea about the form of an 

elliptic paraboloid, e.g. plane Oxz intersects elliptic paraboloid (11.23) along the

r 2line, which in this plane is given by equation A-r = 2 - z , which is equivalent to the
a

equationx2 = 2 • p ■ z of parabola with focal parameter p = a2. Section of paraboloid
z

with plane Oyz is obtained by assuming x = 0 in equation (11.23): ^ -  = 2 -z. This

equation is equivalent to the equation y 2 = 2-q-z  of parabola with focal parameter 

q = b2. These sections are called principal parabolas of elliptic paraboloid (11.23). 

Sections of paraboloid with planes, which are parallel to plane Oxy, are ellipses.

Elliptic paraboloid can be expressed as a surface, which is formed by ellipses, which 

vertexes lies on principal parabolas (Fig. 11.15, a).



Elliptic paraboloid with a = b is called paraboloid o f  revolution. It can be 

obtained by the rotation of parabola M2x3 (where q = a2 =b2) around the axis Oz.

Plane sections give an opportunity to get a rough idea about the form of a 

hyperbolic paraboloid, e.g. sections of hyperbolic paraboloid with coordinate planes 

Oxz and Oyz are parabolas {principal parabolas) x2 = 2pz and y 2 = -2 • q • z with 

parameters p  = a2 or q = b2 accordingly. Since symmetry axes of principal parabolas 

are directed in opposite sides, hyperbolic paraboloid is called saddle surface. Section 

of hyperbolic paraboloid with plane Oxy is a pair of line, which intersect in the 

origin, and section with a plane, which is parallel to the plane Oxy, is hyperbola.

Hyperbolic paraboloid can be expressed as a surface, which is formed by 

hyperbolas (including the "cross” from their asymptotes), which vertexes lie on 

principal parabolas (Fig. 11.15, b).

EXERCISES

1. Plane passes through the points 1,2,3), £(-1 , 3,1), C(3,-4 ,0 ) .  For the

given plane find: a) general equation; b) parametric equation.

2. Find information about positional relationship of each pair of planes (are 

they skew, intersecting, parallel, equal, perpendicular, if they are intersecting find 

their mutual point):

3 • x -  6 • у  +1 = 0;
9 ■ x  -  6 ■ у - 9  ■ z - 5  = 0;
1 0 - x - 5 - y - 5 - z - 1 5  = 0; 
x -  6 • у -  2 • z -1 = 0 .

3. Find information about positional relationship of each pair of lines (are they

skew, intersecting, parallel, equal, perpendicular, if they are intersecting find their 

mutual point):

x = 6 + 3 -t, 
y  = - \ - 2 - t ,  t e  M; 

z  = - 2  + t,  

z - 4  =  0 ,

2-x + 3- z -  7 = 0;

a) 2-x + 2- y + 4- z -12  = 0.
b) 3 - x - 2 - y - 3 - z  + 5 = 0,
c) 2 - x - y - z - 3  = 0,
d) 2 - x - y  + 4 - z - 3  = 0,

a)

b)

x = l + 2 -t, 
y = 7 + t, t еЖ, 

z = 3 + 4 • t,
2-x + 3-y + 2-z = 0. 

x + z -  8 = 0,



c)

d)

х = 9 • t ,
< y  = 5 • t , t e Ж , 

z  = —3 + 1, 
х y + 2 z  — 3
1 = о =

2 • х — 3 • y  — 3 • z — 9 = 0, 
х — 2 • y + z + 3 = 0;

х — 4 y  — 1 z — 6 
2 = = —1

ч х y + 8e) —  = ---—1 4
z + 3 х + y  — z  = 0,

2 • х — y + 2 • z = 0.
4. Get information about positional relationship of each pair of line and plane 

(are they intersecting, perpendicular, parallel, if the line belongs to a plane, in case of 
intersection find mutual point):

a) х —12 y  — 9 z — 1 
4 = 3 = "T~

3 • х + 5 • y — z — 2 = 0;

b) х — 3 • y + 2 • z + 3 = 0, 
2 • х + z — 3 = 0, 

х = —1 + 2 •t ,
c) < y  = 3 + 4 • t ,

z = 3 • t ;
t e Ж ;

х — y — 2 • z + 3 = 0;

3 • х — 3 • y + 2 • z — 5 = 0;

I х + 2 • y + 3 • z + 8 — 0,
d) \[ 5• х + 3• y + z — 16 = 0, 2 • х — y — 4 • z — 24 = 0.

5. Define surface names and compose according canonical equations of the 
given algebraic surfaces of the second order written in Cartesian coordinate system:

a) х2 + y 2 — z2 — 2 • х — 2 • y + 2 • z = 0;
b) х2 — y2 — z2 — 2 • y — 1 = 0;
c) х 2 — 4 • х + z + 3 = 0;
d) 2 • х2 + 9 • y 2 + 2 • z2 — 4 • х • y + 4 • y • z — 1 = 0;
e) 3 • х2 + 3 • y 2 + 3 • z2 — 8 • х • y — 6 • y • z = 0;
g) 2 • х2 + 2 • y 2 + z2 —10 • х • y + 20 • х — 8 • y + 29 = 0;
h) 16 • х 2 + 9 • y 2 — z2 — 24 • х • y — 9 • х —12 • y + 4 • z + 71 = 0.
6. Define surface names and compose according canonical equations of the 

given algebraic surfaces of the second order written in Cartesian coordinate system:
a) m • х 2 + n • y 2 — z2 — 2 • m • n • х — 2 • m • n • y — 2 • m • n • z + m2 • n •(2 — n) = 0;

2b) n • х2 + n • y 2 +----- z2 + 2 • m • х • y + 2 • х • z + 2 • y • z + m — n = 0.
m + n



CHAPTER 12. LINEAR (VECTOR) SPACES

12.1. DEFINITION AND EXAMPLES OF LINEAR SPACES

Axioms of Linear Spaces

Linear {vector) space is a set V of arbitrary elements, that are called vectors, 

in which the operations of vector addition and multiplication by a number are 

defined, i.e. any two vectors u and v have a corresponding vector u + v, which is 

called sum of vectors u and v, any vector v and any number X have a 

corresponding vector X \ , which is called product of vector v and number X, that 

the following conditions are satisfied:

1) u + v = v + u Vu, v e V ; (addition commutativity)

2) u + (v + w) = (u +v) + w Vu, v,w e V ; (addition associativity)

3) there exists such an element о e V , which is called zero vector, that 

v + <? = v V veV ;

4) for any vector v there exist such a vector (-v ) e V , which is called 

opposite to vector v , that v + (-v ) = о ;

5) X(u + \ )  = Xu + X\  V u,ve V , V l e l ;

6) (^ + p) v = + pv Vv e V , \/X, p e Ж;

7) ^(pv) = (^p) v Vv e V , V^, p e Ж ;

8) 1 • v = v Vv e V .

Conditions 1-8 are called the axioms o f linear space. Equality sign between 

vectors means that it is the same element of set V on both sides of equation. Such 

vectors are called equal.

Linear space is a nonempty set, because it necessarily has zero vector.

Operations of vector addition and multiplication of a vector by a number are 

called linear vector operations.

Difference of vectors u and v is a sum of vector u and opposite vector - v ; 

it is denoted as follows: u -  v = u + ( - v ) .
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Two nonzero vectors u and v are called collinear {proportional), if there 

exists such a number X, that v = A.u. Collinearity notion is applicable to any finite 

number of vectors. Zero vector о is collinear to any vector.

In the definition of linear space operation of vector multiplication by number is 

determined for real numbers. Such space is called linear space over the field o f real 

numbers, or simply real linear space. If we substitute the field of real numbers Ж 

with the field of complex numbers C , then we will obtain linear space over the field  

o f complex numbers, or simply complex linear space.

Further, if there is no additional information, real linear spaces will be considered. 

In some cases for simplicity we will omit the word “linear”, because all spaces 

considered in this section are linear.

Examples of Linear Spaces

1. Consider { о } -  set, which consists of the only zero element, with 

operations 0  + 0  = 0  and Xo = o . For these operation axioms 1-8 are satisfied. 

Consequently, set { 0 } is a linear set over any numerical field. Such space is called

zero space.

2. Consider V1,V2,V3 -  sets of geometric vectors (directed segments) on line, 

plane and in space accordingly with ordinary operations of vector addition and vector 

multiplication by a number. From the elementary geometry we get that all axioms 

1-8 of linear space are satisfied. Consequently, sets Vl,V2, V3 are real linear spaces.

Instead of free vectors we can consider corresponding sets of radius vectors, e.g. sets 

of vectors on plane, which have common tail, i.e. are applied to a fixed point of a 

plane, which is a real linear space.

Set of unit radius vectors does not form a linear space, because any sum of 

these vectors does not belong to the considered set.

3. Consider M" -  set of matrix-columns of sizes nx  1 with operations of matrix 

addition and matrix multiplication by a number. Axioms 1-8 of linear space are



satisfied for this space. Zero vector in this set is zero column o = (0 ••• 0)r .

Consequently, set M" is real linear space.

Similarly, set C" of columns of sizes n x 1 with complex elements is a complex 

linear space.

Set of matrix-columns with nonnegative real elements is not a linear space, 

because it has no opposite elements.

4. Consider {Ax = 0 } -  set of solutions of homogeneous system Ax = o of

linear algebraic equations with n unknowns (where A is the matrix of system), as set 

of matrix-columns of sizes nx  1 with operations of matrix addition and matrix 

multiplication by a number. Note, that this operations are determined on set 

{Ax = о} . From Property 1 of homogeneous system solutions it follows that sum of 

two homogenous system solutions and product of its multiplication by a number are 

also solutions of the system, i.e. they belong to the set {Ax = о} . Axioms of linear

space for columns are satisfied (previous example). Thus, set of homogeneous system 

solutions is a real linear space.

Set {Ax = b] of inhomogeneous system Ax = b solutions (Ьфо), is not a linear

space, because it has no zero element (x = o is not the solution of inhomogeneous 

system).

5. Consider Wn/n -  set of matrices of sizes m xn  with operation of matrix 

addition and matrix multiplication by a number. Axioms 1-8 of linear space for this 

set are satisfied. Zero element is a zero matrix О of corresponding sizes. 

Consequently, set is linear space.

6. Consider P{C) -  set of polynomials of the only variable and with complex

coefficients. Operations of polynomial addition and multiplication by a number, 

which is considered as zero order polynomial, are defined and they satisfy axioms 

1-8 (in particular, zero vector is a polynomial, which is identically equal to zero). 

Therefore, set P(C) is a linear space over the field of complex numbers.



Set P(1R) of polynomials with real coefficients is also a linear space 

(obviously, over the field of real numbers).

Set Pn (Ж) of polynomials of order not greater than n with real numbers is also

a real linear space. Note, that operation of polynomial addition is defined on his set, 

because order of polynomial sum does not exceed order of its summands.

Set of polynomials of order n is not a linear space, because sum of such two 

polynomials can be a polynomial of lower order, which does not belong to the 

considered set.

Set of all polynomials of order not greater than n with positive coefficients is 

also not a linear space, because multiplication of such polynomial by negative 

number results into a polynomial, which does not belong to the considered set.

7. Consider С(Ж) -  set of real functions, determined and continuous on M.

Sum ( /  + g) of functions / ,  g and product Xf of multiplication of function /^(M) 

by real number X are defined by the following equalities: ( /  + g) (x) = / (x) + g(x), 

(Xf)(x) = X- /(x )  for all x e l .  These operations are defined on C(M), as sum of

continuous function and product of multiplication of continuous function by 

a number are continuous functions, i.e. elements of C(M). Let’s check the

correctness of linear space axioms. From the commutativity of real number addition it 

follows the correctness of the following equality / (x) + g ( x )  = g(x) + / (x) for any 

x e l .  Therefore /  + g = g + / , i.e. axiom 1 is satisfied. Axiom 2 follows similarly 

from the addition associativity. Function o (x ), which is indentically equal to zero, 

can be considered as zero element (it is obviously continuous). For any function /  

the following equality is correct: / (x) + o(x) = / ( x ) , i.e. the axiom 3 is satisfied. The 

opposite element for function /  is function ( - / ) ( x )  = - / (x). Then /  + ( - / )  = о

(axiom 4 is satisfied). Axioms 5, 6 follow from addition and multiplication by a 

number distributivity and axiom 7 -  from associativity of multiplication by a number. 

The last axiom is satisfied, as multiplication of function by unit do not change the



function: 1 • f ( x )  = f  (x) for any x e l ,  т.е. 1 • f  -  f  . Thus, the considered set C(M) 

with defined operations is a real linear space.

Similarly it can be proved that С‘(М), C2(E ),..., Cm(R ),... (sets of

functions with continuous derivatives of the first, second and etc. order accordingly) 

are linear spaces.

12.2. LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

OF VECTORS

Notions of Linear Dependence and Linear Independence of Vectors

For elements of a linear space operations of multiplication by a number and 

addition are defined. With these operations algebraic expressions can be composed. 

Vector v is called a linear combination of vectors Vj, v2,..., v*, if

v = a 1v1+ a 2v2+... + a,v^, (12.1)

where a 1,a 2,.. . ,a (t are some numbers. In this case it is said that vector v is 

decomposed by vectors v1,v2,...,vyt {vector\ is linearly expressed by vectors 

Vj, v2,..., vk ) and numbers a ],a 2,...,a k are called decomposition coefficients. Linear 

combination with zero coefficients v = 0 • \ l + 0 • v2 +... + 0 • v* is called trivial.

Set of vectors , v2,..., v* from V is called system of vectors, and any part of 

the system -  subsystem.

System of к vectors v1,v2,...,v (t is called linearly dependent, if there exist 

such numbers a x,a 2,...,ak, not all equal to zero simultaneously, that the following 

equation is correct

oqvj+ a 2v2+ ... + a  k\ k=o,  (12.2)

i.e. their linear combination is a zero vector.

System of к vectors \ l , \ 2, . . . , \ k is called linearly independent, if equality 

(12.2) is possible only when оц = a2 = ... = a k =0 , i.e. linear combination in the left



part of (12.2) is trivial. One vector Vj also forms the system: if Vj =o -  linearly 

dependent, if Vj ф о -  linearly independent. Rank o f the vector system \ l , v2,..., \ k 

is a maximum number of linearly independent vectors of the system; it is denoted by 

rg(vl5v2,...,v,).

Property of Linearly Dependent and Linearly Independent Vectors

1. If system of vectors has zero vector, then it is linearly dependent.

2. If system of vectors has two equal vectors, then it is linearly dependent.

3. If system of vector has two proportional (collinear) vectors ( v. = X\ J), then

it is linearly dependent.

4. System of к > 1 vectors is linearly dependent if and only if there is at least 

one vector, which is a linear combination of others.

5. Any vectors, which are part of the linearly independent system, form 

linearly independent subsystem.

6. System of vectors, which has linearly dependent subsystem, is linearly 

dependent.

7. If system of vectors Vj, v2,..., vk is linearly independent and after addition 

of vector v it becomes linearly dependent, then vector v can be uniquely 

decomposed by vectors \ l , \ 2, . . . , \ k, i.e. decomposition coefficients (12.1) are 

defined unambiguously.

8. Let any vector of system can be decomposed by vectors of
к

system \ l , \ 2, . . . , \ k, i.e. u,. = ^ а .,.у . , i = (it is said that system of vectors
j=i

U p U j , . . . , ^  is linearly expressed by system of vectors V j , v2,..., v*). Then if l> k , 

the system of vectors U j , u2,..., u7 is linearly dependent.

Consider system of vectors v1,v2,...,v jfe of real linear space V (i.e. over the 

field of real numbers M). Set of all linear combinations of vectors v1,v 2,...,v i is 

called their linear span and it is denoted by



Span(v1,v2,...,vyt) = { v: v = axvx+a2v2 +... + akvk\ a. eR , / =

Vectors are called generators of linear span Span(v1,v2,...,vi ).

Also linear span can be denoted by Lin(v1,v2,...,v^).

Example 12.2. In space V2 of radius vectors on plane (the second example of 

linear spaces) consider two noncollinear vectors a = OA and b - O B .  Find

□  Any radius vector с = OC can be decomposed by two noncollinear vectors of this 

plane, i.e. it can be expressed as linear combination c = a ■ a + p -b , where a e l  and 

P e Ж. Consequently, set of all possible linear combinations of a and b coincides

Example 12.3. Prove that in space P2(M) of polynomials, which order is not 

greater than two (the sixth example of linear spaces), polynomials p0(x) = 1, 

p{( x) = x, p2(x) = x2 are linearly independent. Decompose polynomial

p(x) = (x + l)2 by p0(x) = 1, д (х ) = х, p 2(x) = x2.

□  Compose linear combination of the given polynomials and equate it to zero (to 

zero element -  polynomial identically equal to zero):

Identical equality to zero of a polynomial is possible in only one case: when all its 

coefficients are equal to zero, i.e. ^1 = ^2 = ^3 = 0. Consequently, considered 

polynomials are linearly independent. Write the given polynomial p(x) as linear 

combination of polynomials p 0(x) ,  p x(x) ,  p 2(x ) '-

with the whole space V2 of radius vectors on a plane, i.e. Span (a, b^ = V2. ■

\ p Q ( x )  +  X 2 p x ( x )  +  X 2 p 2  ( x )  =  V 1 +  X 2 x  +  V 2 -  0  •

p{x) = (x + 1)2 = x2 + 2x +1 = 1 • Po(x) + 2 • A(x) + 1' A (x) и



12.3. DIMENSIONALITY AND BASIS OF LINEAR SPACE

Dimensionality and Basis Notions

Linear space V is called n-dimensional, if there exists a system of n linearly 

independent vectors and each system of bigger number of vectors is linearly 

dependent.

Number n is called dimensionality {number o f dimensions) of linear space V 

and it is denoted by dim V . In other words, dimensionality of a space is a maximum 

number of linearly independent vectors of this space. If such number exists, then 

space is called finite-dimensional. If for any natural number n in space V there 

exists a system of n linearly independent vectors, then this space is called infinite- 

dimensional (it is denoted by dimV = oo). Further, if there is no additional 

information we will consider finite-dimensional spaces.

Basis of n -dimensional linear space is an ordered set of n linearly 

independent vectors {basis vectors). Basis of linear space is defined ambiguously, e.g. 

if ej,e2,...,en is a basis of V , then the system of vectors A,ej, Xe2,...,Xen for any 

X ф 0 is also a basis of V .

Number of basis vectors in different bases of the same finite-dimensional space 

is obviously the same, because this number equals to dimensionality of this space.

In some spaces, which often appear in different applications, one of possible 

bases, that is the most convenient from practical point of view, is called standard.

Properties of Basis

1. If e1,e2,...,enis basis of и -dimensional linear space V, then any vector 

v e V can be expressed as linear combination of these basis vectors:

v = viei + v2e2 +... + v n t n (12.3)

and moreover this expression is unique, i.e. the coefficients v1,v2,...,vn are define 

unambiguously. In other words, any vector of the space can be uniquely decomposed 

by basis.



2. If е15е2,...,ел is basis of space V, then V = Span(el5 e2,...,en), i.e. linear 

space is linear span of its basis vectors.

3. If е1,е2,...,еи is linearly independent vector system of linear space V and

any vector v e V can be expressed as a linear combination v = + v2e2 +... + vnen,

then space У has dimensionality n and system el5e2,...,e„ is its basis.

4. Any linearly independent system of к vectors of n -dimensional linear space 

(1 < к < n) can be complemented to the basis of this space.

Examples of Linear Spaces Bases

1. Zero linear space { о } has no linearly independent vectors. Therefore, its 

dimensionality equals to zero: dim{ о } = 0. This space has no basis.

2. Spaces VX,V2,V3 have dimensionalities 1, 2, 3 accordingly. Indeed, any 

nonzero vector of space Vl forms linearly independent system (by definition), and 

any two nonzero vectors of Vx are collinear, i.e. linearly dependent (example 12.1). 

Consequently, dimF, = 1, and basis of this space 1, is any nonzero vector. Similarly, 

it can be proved that dim V2 = 2 and dimF3 =3. Basis of space V2 is any ordered set 

of noncollinear vectors (one of them is assumed as the first basis vector, another -  as 

the second). Basis of V3 is an ordered triplet of noncoplanar vectors. Standard basis

of Vl is unit vector i on a line. Standard basis of V2 is basis i , j  , which consists of 

two mutually perpendicular unit vectors of plane. Standard basis in V3 is basis / , j  ,

к , which consists of three unit pairwise perpendicular vectors, which form the right 

triplet.

3. In space M” it is easy to find system of n linearly independent columns, 

e.g. columns of identity matrix, which are linearly independent

f ° l f ° l

el =
0

5 e2
1

>•••> e„
0

, 0 , J ,



Consequently, dim M" = n . Space Ж" is called n-dimensional real arithmetical 

space. The given set of bases is considered as standard basis of space Ж”. Similarly, 

it can be proved, that dimC”=n,  therefore space C" is called n-dimensional 

complex arithmetical space.

4. Recall, that any solution of homogeneous system Ax = o of linear equations 

with n unknowns can be expressed in a form x = Qcpj + C2cp2 +... + Cn_rсри_г, where 

r = rgA  and (p,, cp2,..., cpn_r is fundamental system of solutions. Consequently, 

[Ax = o] = Span(cp1,cp2,...,cpn_r), i.e. basis of space {Ax = o} of homogeneous system 

solutions is its fundamental system of solutions, dimensionality of such space 

dim { Ax = o )  = n - r .

5. In space Ж 2х3 of matrices of sizes 2x3 it is possible to choose 6 matrices:

e l =

^ 1 0 o '
, 6 ,  =

' 0 1 o '
, e ,  =

' 0 0 l ' l

0 0 ,
5 2

0 0 ,
’ 3

0 0 ,

" 0 1 o ' '0 0 o ' ' 0 0 o '

e 4 =
, 0 0 Oy

> e 5 =
v 0 1 0 ,

> e 6 =
v 0 0 к

which are linearly independent. Indeed, their linear combination

a. ex + oc2 e2 + a 3 e3 + a 4 64 + СЦ e5 + a 6
'  a x a 2 a 3"

Va 4 a 5 a 6 у
(12.4)

equals to zero matrix only in trivial case ( а г = a 2 =... = a 6 = 0). Reading the equality 

(12.4) from right to left, we conclude, that any matrix from Ж2x3 can be linearly 

expressed via the chosen 6 matrices, i.e. M2x3 = Span(el5 e2,..., e6) . Consequently,

dimЖ2х3 = 2-3 = 6, and matrices ex, e2,..., e6 are (standard) basis of this space.

Similarly it can be proved, that dimMwx" = m - n .

6. For any natural number n in space of polynomials F*(C) with complex 

coefficients it is possible to find n linearly independent elements, e.g. polynomials 

ex=l, e2 = z,  e3=z2,..., en = zn~l are linearly independent, because its linear 

combination ax-ex + a2-e2 + ... + an-en=ax + a2z + ... + anzn~x equals to zero



polynomial (o(z) = 0) only in trivial case (al =a2 = ... = a n = 0). Since this system of 

polynomials is linearly independent for any natural n, the space P(C) is infinite­

dimensional.

Similarly, we make a conclusion about infinite dimensionality of space P(M) 

of polynomials with real coefficients.

Space РИ(Ж) of polynomials of order not greater than n is finite-dimensional. 

Indeed, vectors e1 = l, e2 = x,  e3=x2,..., en+l = xn form (standard) basis of this 

space, because they are linearly independent and any polynomial from РИ(М) can be 

expressed as linear combinations of these vectors:

anxn +... + axx + a0=a0-el + al -e2 + ... + an- en+l 

Consequently, dimP^ (M) = n +1.

7. In space ГШ(М) of trigonometric binomials (with frequency со Ф 0) with real 

coefficients, basis is formed by monomials eft)  = sin cot, e2(t) = coscot. They are 

linearly independent, because identical equality a sin cot + b cos cot = 0 is possible only 

in trivial case (a = b = 0). Any function /  (t) = a sin cot + b coscot linearly expresses

via basis binomials: f {t )  = a e f t ) + b  e2{t). Hence, dimPro (M) = 2 .

12.4. COORDINATES AND COORDINATES TRANSFORMATIONS

Coordinates of Vectors in the Given Basis

Consider ej, e2,..., e„ as basis of linear space V . Then each vector v e V can 

be decomposed by basis (Property 1 in Section 12.3), i.e. expressed in a form 

v = + v2e2 +... + vno,n, and coefficients Vj, v2,..., vn in decomposition are uniquely

defined. These coefficients vl5v2,...,v„ are called coordinates of vector v in basis

el5e2,...,e„ (or relative to basis el5e2,... ,e„).

Coordinates v1,v2,...,v„ of vector v is an ordered set of numbers, which is

represented as a matrix-column v = (vx ••• vn)r , is called coordinate column of

vector v (in the given basis).
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V e c t o r  a n d  i t s  c o o r d i n a t e  c o l u m n  i s  d e n o t e d  b y  t h e  s a m e  l e t t e r  -  b o l d  a n d  l i g h t  

f o n t  a c c o r d i n g l y .

I f  b a s i s  ( a s  a n  o r d e r e d  s e t  o f  v e c t o r s )  i s  e x p r e s s e d  a s  a  s y m b o l i c  m a t r i x - r o w  

( e )  =  ( e 1, . . . ,  e n )  =  ( e 1 —  e n ) ,  t h e n  t h e  d e c o m p o s i t i o n  o f  v e c t o r  v  b y  b a s i s  ( e )  c a n  

b e  w r i t t e n  i n  t h e  f o l l o w i n g  f o r m :

v ie i +  V2e 2 +  .. +  v  en n ( e 1 e n )

V v n У

( e )  v .

T h e r e  m u l t i p l i c a t i o n  o f  t h e  s y m b o l i c  m a t r i x - r o w  ( e )  b y  n u m e r i c a l  m a t r i x -

c o l u m n  v  i s  c a l c u l a t e d  b y  t h e  r u l e s  o f  m a t r i x  m u l t i p l i c a t i o n .

I f  i t  i s  n e c e s s a r y ,  w h e n  t h e r e  a r e  d i f f e r e n t  b a s e s  i n  q u e s t i o n ,  n o t a t i o n  o f  a  b a s i s ,  

r e l a t i v e  t o  w h i c h  a  c o o r d i n a t e  c o l u m n  w a s  o b t a i n e d ,  c a n  b e  s p e c i f i e d ,  e . g .  v  -
(e)

c o o r d i n a t e  c o l u m n  o f  v e c t o r  v  r e l a t i v e  t o  b a s i s  ( e )  =  ( e 1, . . . ,  e n ) .

B y  t h e  P r o p e r t y  1 ( S e c t i o n  1 2 . 3 )  i t  f o l l o w s ,  t h a t  e q u a l  v e c t o r s  h a s  e q u a l  

c o r r e s p o n d i n g  c o o r d i n a t e s  ( i n  t h e  s a m e  b a s i s ) ,  a n d  v i c e  v e r s a ,  i f  c o r r e s p o n d i n g  

c o o r d i n a t e s  o f  v e c t o r  a r e  e q u a l ,  s u c h  v e c t o r s  a r e  e q u a l  t o o .

L i n e a r  O p e r a t i o n s  i n  C o o r d i n a t e  F o r m

C o n s i d e r  e 1 , e 2 , . . . , e n -  b a s i s  o f  l i n e a r  s p a c e  V , v e c t o r s  u  a n d  v  i n  t h i s  b a s i s  

h a v e  t h e  f o l l o w i n g  c o o r d i n a t e s  u  =  ( u 1 —  u n  ) T a n d  v  =  ( v 1 —  v n  ) T a c c o r d i n g l y ,

i . e .

u  =  u i e i +  u 2e 2 +  . . .  +  u ne n , V  =  v i e i +  v 2e 2 +  . . .  +  v ne n . ( 1 2 . 5 )

D u r i n g  t h e  a d d i t i o n  v e c t o r  c o o r d i n a t e s  a r e  s u m m e d  u p :

u  +  v  =  ( u i +  Vi )  e i +  ( u 2 +  v 2 )  e 2 +  . . .  +  ( u n +  v n )  e n . ( 1 2 . 6 )

D u r i n g  t h e  m u l t i p l i c a t i o n  b y  a  n u m b e r  a l l  c o o r d i n a t e s  a r e  m u l t i p l i e d  b y  t h i s  

n u m b e r :

D v  =  (f v i )  e i +  ( ^ v 2 )  e 2 +  . . .  +  ( D v n )  e n . ( 1 2 . 7 )



In other words, sum o f vectors u + v has coordinates u + v, and product X\ 

has coordinates Xv. Certainly, all coordinates are obtained in the same basis 

(e) = (e1,...,ej.

Coordinates Transformation during Basis Change

Consider two bases of space V: (e) = (e1,...,en) and (e') = (e[,e'2,...,e'„). Basis 

(e) we will call "old" and basis (e') -  "new", then decomposition of each vector of 

new basis by the old one is given by:

e' = ^ ei + ^ e2+-- + ̂ e*> i = 1 , 2 , ( 1 2 . 8 )

Writing by columns the coordinates of vectors (ej,e2,...,e'n) in basis (e) it is 

possible to compose matrix:

S =
( s 1̂1 ••• ^

Л 1 ••• s ;nn J

(12.9)

Square matrix S , which is composed from coordinate columns of vectors from 

new basis (e') decomposed by old basis (e), is called transition matrix from old 

basis to new one. By the transition matrix (12.9) formulas (12.8) can be rewritten as:

(ej ••• e'„) = (e1 ••• e„)-S or simpler (e') = (e)-5. (12.10)

Multiplication of symbolic matrix-row (e) by transition matrix S in (12.10) is 

calculated by the rules of matrix multiplication.

Consider in basis (e) vector v with coordinates Vj, v2,..., vn, and in (e') with 

coordinates v[ , v2,..., v'n, i.e.

v = Vjej + v2e2 +... + vnen = vft + v& +... + v'< 

or simpler, v = (e) v = (e') V .

Coordinate column of vector in old basis is obtained as the result of 

multiplication o f transition matrix by the coordinate column o f vector in new basis:



v  =  S V  

(e) (e')
o r

v  1
•

, v

J11

V *«1

1«

ИП J v V j\  « J

( 1 2 . 1 1 )

P r o p e r t i e s  o f  T r a n s i t i o n  M a t r i x

1 .  C o n s i d e r  t h r e e  b a s e s  ( e ) ,  ( f ) ,  ( g )  o f  s p a c e  V  a n d  t h e  f o l l o w i n g  t r a n s i t i o n  

m a t r i c e s :  S  f r o m  b a s i s  ( e )  t o  b a s i s  ( f ) ;  S  f r o m  b a s i s  ( f )  t o  b a s i s  ( g ) ;
( e ) ^ ( f )  ( f ) ^ ( g )

S  f r o m  b a s i s  ( e )  t o  b a s i s  ( g ) .  T h e n
(e ) ^ (  g)

S  =  S  • S  .
(e ) ^ ( g ) (e ) ^ ( f ) (f ) ^ ( g ) '

( 1 2 . 1 2 )

2 .  I f  S  i s  t r a n s i t i o n  m a t r i x  f r o m  b a s i s  ( e )  t o  b a s i s  ( f ) ,  t h e n  t h e  m a t r i x  S  i s  

i n v e r t i b l e  a n d  i n v e r s e  m a t r i x  S -1  i s  t r a n s i t i o n  m a t r i x  f r o m  b a s i s  ( f )  t o  b a s i s  ( e ) .  

C o o r d i n a t e s  o f  v e c t o r  v  i n  b a s e s  ( e )  a n d  ( f )  a r e  c o n n e c t e d  b y  t h e  f o l l o w i n g  

f o r m u l a s :

v  =  S  v
(e) (f)

v  =  S  1 v  .
( f )  (e)

3 .  A n y  i n v e r t i b l e  s q u a r e  m a t r i x  o f  n - t h  o r d e r  c a n  b e  a  t r a n s i t i o n  m a t r i x  f r o m  

o n e  b a s i s  o f  n  - d i m e n s i o n a l  l i n e a r  s p a c e  t o  a n o t h e r  o n e .

E x a m p l e  1 2 . 5 .  I n  t w o  d i m e n s i o n a l  a r i t h m e t i c a l  s p a c e  Ж 2 t h e r e  a r e  t w o  b a s e s :

F i n d  t r a n s i t i o n  m a t r i x  S  f r o m  b a s i s
(f ) ^ ( g )

f  3 " и f  1 1
f - 1 1

f 1 =

V 2  J

,  f 2 = a n d  g 1 =

V 2  J

,  g 2 =

V 1 J

гсл
( f )  t o  b a s i s  ( g )  a n d  c o o r d i n a t e s  o f  v e c t o r  v  =

9  j

i n  e a c h  b a s i s .

□  C o n s i d e r  s t a n d a r d  b a s i s  e 1

f  1 л

V 0  J
, e 2

f  0  ̂

V1 J

o f  s p a c e  Ж 2 ( S e c t i o n  1 2 . 3 ) .  F i n d

c o o r d i n a t e s  o f  v e c t o r s  f 1 , f 2 , g 1 , g 2 i n  s t a n d a r d  b a s i s .  D e c o m p o s e  v e c t o r  f 1 :

f

V 2  J

3  •
f  1 1

V 0  J

+  2  •
f  0  ̂

V 1 J

3  • e 1 +  2  • e 2 , i . e .  f

f

V 2  J



In standard basis (e) of space R2 coordinate column f x coincides with fP For

other vectors similarly we get f 2
( i )

f 1 ! f _ 1 l

A
> S i  =

, 2 ,
> & 2  =

, V
From the coordinate

columns we compose the transition matrix (12.9) from standard basis (e) to the given

S ='3 1> S =Г1 - П

(e)->(f) ,2 b (e)->(g) ,2 V

By the Property 1 of transition matrices we obtain S = S ■ S . By
(f)-Kg) (f)-Ke) (e)-»(g)

Property 2: S = S . Therefore
(f)->(e) (e)-Kf)

s = s~1 • S =
(f)->(g) (e)-»(f) (e)^(g)

(3 i v V i - f \

v2 h 2 1
1V1 - f \

-2 3 2 1
(-1  -2 > 

4

In standard basis (e) of space Ж2 coordinate column v =
( e )

f 6l
A

coincides with vector

v . Find coordinates of this vector in basis (f) (by Property 2 of transition matrices):

'3 Г -1 f6l f 1 -f| f6] '-3'v = g 1 v = = . =(f) (e)->(f) (e) ,2 b ,9, -2 3 ,9, ,15,

Indeed, the following decomposition is correct

v = ( 6 )

A
= -3 ( 3 )

A
+ 15

A
= - 3 • /i +15 ■ / 2.

Find coordinates of vector v in basis (g) in several ways:

= g-1 v =
( - 1 - 2 '

-1
f “3l 1 f  5 2 ''- 3 s f 53

V
(g) (fHe) (f) , 4 5 , ,15, " 3 ,-4 ~ b ,15, , - r

v = S 1 v =
n - Г |

-1
f6] 1 1 13f 6l f 53=

(g) (e)—>(g) (e) ,2 , 9, " 3 ,-2 b , 9 , - b
The obtained result confirms the decomposition:

f 6^
A A

+ ( - l)  = 5 • gj + (-1) ■ g2 •
v 1 J



12.5. SUBSPACES OF LINEAR SPACE

12.5.1. Definition of Linear Subspace

Nonempty subset L of linear space V is called linear subspace of space V, if:

1) u + v e L  V u, v e L (subspace is closed relative to addition operation);

2) X\ e L V v e L for any number X (subspace is closed relative to 

multiplication by a number operation).

For linear subspace denotation we will use the following structure L < V , and 

the word "linear" will be omitted for simplicity.

Note, that conditions 1, 2 in definition can be substituted with only one 

condition: ^u + p v eL  for any vectors u ,v e L  and any numbers X and p. 

Certainly, here and in definition it we speak about arbitrary numbers from the same 

numerical field, over which the linear space V is defined (Section 12.1.1).

Properties of Linear Subspaces

1. Any linear space V has two linear subspaces:

a) the space itself V , i.e. V < V ;

b) zero subspace { о }, which consists of a unique zero vector of V, i.e. 

{ о } < V . These subspaces are called improper, and the rest -proper.

2. Any subspace L of linear space У is its subset: L < V L c V ,  but not 

every subset M c V  is linear subset, because it can be unclosed relative to linear 

operations.

3. Subspace L of linear space V is linear space with the same operations of 

vector addition and vector multiplication by a number as in space V , because they 

satisfy axioms 1-8 (see Section 12.1). Thus, it is possible to talk about subspace 

dimensionality, basis and etc.

4. Dimensionality of any subspace L of linear space V does not exceed 

dimensionality of V : dim L < dim V . If the dimensionality of subspace L < V equals



to dimensionality of finite-dimensional space V (dim L = dim V ), then the subspace 

coincides with the given space: L = V .

5. For any subset M  of linear space V its linear span Lin(M) is subspace of 

У and M  c= Lin(M) < V.

6. Linear span Lin(L) of subspace L < V coincides with the subspace L , i.e. 

Lin (L) = L.

12.5.2. Examples of Linear Subspaces

1. Space {o  }, which consists of a unique zero vector of space V, is a 

subspace, i.e. { о } < V .

2. Consider Vl,V2,V3 -  sets of geometric vectors (directed segments) on a line, 

plane and in space accordingly. If the line belongs the plane, then Vl <\V2<V3. On the

contrary, set of unit vectors is not a linear subspace, because its multiplication by a 

number, which is not equal to 1, will result into vector, which does not belong to the 

initial subspace.

3. In n -dimensional arithmetical space K” consider set L of "semi-zero" 

columns x = (Xj ••• xm 0 ••• 0)r with last (n -m )  elements equal to zero. Sum 

of such "semi-zero" columns is a column of the same form, i.e. addition operation is 

closed in L. Multiplication of "semi-zero" column by a number will result into 

"semi-zero" column, i.e. multiplication operation is closed in L . Therefore, L < Ж” 

and dimL = m .

On the contrary, subset of nonzero columns in M” is not a linear subspace, 

because multiplication by a zero results into zero column, which does not belong to 

the considered set. Examples of other subspaces of M” are listed further.

4. Space {Ax = o} of homogeneous system solutions with n unknowns is a

subspace of n -dimensional arithmetical space M”. Dimensionality of this subspace is 

defined by a matrix of system: d\m{Ax = o} = n -  rg A .



Set {Ax = b} of inhomogeneous system solutions (b фо) is not a subspace of

Ж”, because the sum of two solutions of inhomogeneous system will not be the 

solution of this system.

5. In a space M"x" of square matrices of order n consider two subsets: set Ж”™

of symmetric matrices and set M"kx"w of skew-symmetric matrices. Sum of symmetric 

matrices is a symmetric matrix, i.e. addition operation is closed in Ж”™. 

Multiplication of symmetric matrix by a number also results in symmetric matrix, i.e. 

multiplication operation is closed in Ж”™. Consequently, set of symmetric matrices is

a subspace of square matrices space, i.e Ж”™ < M”x”. It is easy to find the

dimensionality of this subspace. Standard basis is formed by n matrices with the only 

nonzero element (it is equal to 1) on the main diagonal, and matrices with two 

nonzero elements (they are equal to 1), which are placed symmetrically relative to the

main diagonal. In total there will be n + { n - \ )  + ... + 2 + \ = + ̂  matrices in the

basis. Consequently, dimIR”™ = ^ S i m i l a r l y  we find, that Ж"к"№ oM”x” and

dim Жn x r t
skew

n{n - 1) 
2

Set of singular square matrices of n -th order is not a subspace of Ж "x”, because

the sum of two singular matrices can be not singular matrix in ,2 x 2 e.g.

' 1  o ' '0 o ' f  1 o '
+ =

v O  0 , ,0 к v 0 К

6. In space of polynomials Р(Ж) with real coefficients it is possible to show

the following sequence of subspaces .P0 (M) < i (Ж) <Р2(Ж) < <  Pn(R) < <  P ( R ) .

Set of even polynomials (p(-x)  = p(x)) is a linear subspace of Р ( Ш ) , because

the sum of even polynomials and multiplication of even polynomials by a number 

will be even polynomials.

Set of odd polynomials (p(-x)  = -p(x))  is also a linear space. Set of



polynomials with real roots is not a linear subspace, because addition of such 

polynomials can result into a polynomial with no real roots, e.g.

(x2 — x) + (x + 1) = X 2 + 1.

7. In space С(Ж) it is possible to show the following sequence of subspaces: 

С(М )>С1(М )>С2(Ж )> ...>С ”г(Ж)>... .

Polynomials from Р(Ж) can be considered as functions, determined over Ж. 

Since polynomial is a continuous function with derivatives of any order, it is possible 

to write: Р(Ж)<С(Ж) and Рй(Ж)<|С"”(Ж) V m , n e N .

Space of trigonometric binomials ГЮ(Ж) is subspace of Ст (Ж), because 

derivatives of any order of function f ( t ) =  = a sin cot + b cos cot are continuous, i.e.

ГЮ(Ж )<СИ(Ж) V ffleN.

Set of continuous periodic function is not a subspace of С(Ж), because the 

sum of two periodic functions can be a aperiodic function, e.g. sint + sin(7i/).

EXERCISES

1. Prove that for the given linear space the system of vectors (e) form valid 

basis. Decompose vector (v) by this basis:

r n f  2 >
a) space Ж2: ej = >e2 — ,v =

\jn + \) j 1.

'in ' 'm + V rm + 2Л
b) space Ж3: ej = 1 >e2 = 2 ,e3 — 2 , V  = 3 ;

,1 , 4 1 , V 1 , I v
c) space of polynomials P2 of degree not exceeding 2: t l(x) = x + m,

e2(x) = x2 -1 , e3(x) = x -  m -1 , \(x) = n ■ x2.

2. Find transition matrix S from basis ( f ) to basis (g ) :

a) space Ж2: f‘ = Л2 =
m + V 

1 ,
>gi =

\ n J
,§2 = yn + \)



b) space of symmetric matrices of the 2nd order

(0 0Л '0 П  (m O'] (0 O'] r m m + nл
40 0 / N>

 
* II

r О l J A
~~ i A ’ §1 — A л ’§2 — A^1 0J  ̂0 0J ^0 Km + n n у

c) space of polynomials P2 of degree not exceeding 2: f,( jc)  = 1, f2(x) = x,  

f3(x) = x2, gj(x) = x + m, g2(x) = x2 - n ,  g3(v) = x — m — \ .

3. Find dimensionality and basis of the given subspaces of IR4:

xx + x2 + n x3 + m x4 = 0,
a) {Ax = 0} -  set of solutions of the system:

mxx + nx2 + 2x3 + 3x4 = 0 ;

b) Lin (ах,а2,а3) -  linear span of vectors ax- {  1 1 m

a2 = (0 2 0 m f , a3 = (1 3 m m -  n)T.

4. Find transition matrix S from basis ( f ) to basis (g ) :

~ n ) \

a) f\ =

ь )А  =

f 3l >f2 =
r2A

A A

 ̂2̂
2 >f2 = 3

A ,3,
' /з =

V-2y
§2 =

v 6 y

"3" "3" f 5l f 1 1
7 -gx = l • S2 = 2 • & = 1

A V4, A

5. In the space M2x2 of square second-order matrices, a set {A X  = X A j  of

matrices that are permutable with a matrix A =
m n

is given. Show that
\ m - n  m + n)

this set is a linear subspace in M2x2, find its dimensionality and basis.



CHAPTER 13. LINEAR MAPPINGS AND TRANSFORMATIONS

13.1. LINEAR MAPPINGS

13.1.1. Definition of Linear Mappings

Let’s show main definitions, connected with the notion of mapping (function, 

operator).

Consider V and W -  given sets. It is said, that mapping (function) /  is 

defined on set V , if every element v e V  has a unique corresponding element /  (v) 

of set W . Such a correspondence is called a mapping of a set V into a set W and it 

is denoted by f : V —>W or V — —̂>W .

If mapping /  for an element v e V return a corresponding element w e W , i.e. 

w  = / ( v ) , element w is called image of v , and v -  original of w .

Two mappingsf \ V ^ W  and g:V -> W  are called equal, if / (v) = g(v) 

V v e V .

Mapping f \ V ^ W  is called:

• injective, if different elements of V have different images: v, ф v2 

f M * f ( y 2);

• surjective, if for any element from W there is at least one original:

V w  eW  Б v e V : w  = / ( v ) ;

• bijective (unambiguous), if it is injective and surjective simultaneously. 

Surjective mapping is also called a mapping of a set V to a set W . 

Composition of mappings g \U  ->V  and /  :V —>W is a mapping

/  ° g \ U  -» W , which is defined by the equality ( /  ° g)(u) = f (g (u ) ) .

Mapping f>v : V - »  V is called identical, if any element of set V is associated 

with itself: fiy(v) = v V v e V .

Mapping f ~ x \ W is called inverse for the mapping f - . V^-W,  if 

f ~ l о f  =  $v ; V -» V and /  о f ~ x = : W - »  W . Mapping /  is called invertible, if



there exists an inverse mapping for it. Necessity and sufficiency condition of 

invertibility is bijectivity (unambiguity) of a mapping.

Consider V and W -  linear space (over the same numerical field). Mapping 

o f : V -» W is called linear, if:

1) c£{\l + v2) = c^(v1) + c^(v2) V v , e V ,  V v2 e V;

2) cd{X-y) = X-cd{\) V v e V for any number X (from the given numerical

field).

Condition 1 is called additivity of mapping, and condition 2 -  homogeneity. 

Space V is called space o f originals, and space W -  space of images.

Note, that conditions of additivity and homogeneity can be substituted with a 

unique condition of linearity.

cd(X1\ 1 +  X2\ 2) = (v j  + V f ( v 2) V V j G V ,  V v2 e  V 

for any numbers Xl and X2 from the given numerical field.

13.1.2. Properties of Linear Mappings

Consider o f : У -» W -  linear mapping.

1. Linear mapping : У -» W associates zero element ov of V with zero

elements ow of W

2. Linear mapping of linear combination is a linear combination of images:
f  k

cd 2 > ,v ,  = Z A'«-of(v<)-
V ы  у /=i

3. If vectors vj,...,v* are linearly dependent, then their images are linearly 

dependent.

4. Consider d t : V -» W -  surjective mapping of space V onto space W and 

vectors wj,...,w* of space W , which form linearly independent system. Then in V

there exists such linearly independent system of vectors viv ..,v t , that c/7(v;) = w;,

i = \,...,k .



5. During linear surjective mapping <A: V -> W of finite-dimensional space 

the dimensionality of image space does not exceed the dimensionality of original 

space, i.e. dim W < dim V .

6. Composition of linear mapping is a linear mapping too.

7. If linear mapping : V -» W is invertible (unambiguous), then the inverse 

mapping oA~x: W -» V is linear.

8. Linear mapping of finite-dimensional space is unambiguously defined by 

images of basis vectors.

Linear Operations with Linear Mappings

Sum o f mappings cd : V - » W and £ :  V - » W is a mapping 

(dt + £ ): V - » W , which is defined by the following equality

(of + $)(v) = csf (v) + £ ( \ )  for any v e V .

Product o f mapping cd : V - » W and number X is a mapping 

(X • <Д) : V —» W , which is defined by the following equality (A,• cd)(y) = X-c/t(\)

for any v e V .

Sum of linear mapping and product o f linear mapping and a number are linear 

mappings.

13.1.3. Examples of Linear Mappings

1. Denote by 0: V —» W a zero mapping, which associates any vector v e V 

with zero element ow of space W . Conditions of additivity and homogeneity of such 

mapping are, obviously, satisfied. This mapping is neither injective (different 

originals \ l and v2 are associated with the same image ow) nor surjective (from all 

vectors of W only zero element has an original). Therefore, zero mapping is not 

bijective and consequently it is not invertible.

2. Consider in n -dimensional linear space V basis e1,...,en. Denote by

ae:V —> M" mapping, which associates every vector v with its coordinate column 

v = (Vj ••• v j  relative to the given basis. This mapping is linear, because during



the addition of vectors of the same basis their coordinates are also summed up and 

during the multiplication of vector by a number coordinates of this vector are also 

multiplied by that number (Section 12.4). This mapping is injective (different vectors 

have different coordinates in the same basis) and surjective (for any column 

v = (Vj ••• Уи)г еЖ” there exists an original v = v1e1 + ... + vwe„). Therefore, 

mapping аз is bijective and consequently invertible. On the other hand, mapping, 

which associates every vector v e V  with column v = ( V j  + l ••• vn + 1 /  eM", is 

not linear, because the image of zero vector ov e V  for such mapping is a column 

(1 • • • \)т ф о , which is not equal to zero.

3. Consider .РП(Ж) and /(_, (Ж) -  spaces of polynomials with real coefficients

polynomial derivative p(x) e Pn (M). Then the mapping (differentiation operator)

©: Pn (Ж) —» Pn_x (Ж) associates every polynomial p(x) 6 ?В(Ж) with its derivative,

i.e. polynomial from /^ (Ж ). This operator is linear, because derivative of a sum

equals to a sum of derivatives and derivative of a product of number and function 

equals to a product of derivative and that number. Differentiation operator is not 

injective (two polynomials with different constant terms have the same derivative) 

and it is surjective (for any polynomial р„_г(х) there is an original -  polynomial from

the set of primitives j*pn_x (x) dx + C , where C is arbitrary constant). Therefore

differentiation operator is not bijective and consequently it is noninvertible.

Integration operator i : Pn_x (Ж) —» Т((Ж), which associates polynomial

pn_x{x) e Рп_г (Ж) with polynomial

is also linear (by properties of integral). This operator is injective (from the equality 

of images by the differentiation by the upper limit of integration we will obtain the 

equality of originals) and it is not surjective (polynomial with nonzero constant term

о



has no original). Therefore, integration operator is not bijective and consequently it is 

nonin vertible.

13.1.4. Matrix of Linear Mapping

Consider cd : V —»W -  linear mapping of n -dimensional space V onto 

m -dimensional space W . Fix in space V arbitrary basis (e) = (e15...,e„), and in space 

W basis (f) = (fl5...,fOT). Linear mapping is unambiguously determined by images of 

basis vectors (Property 8). Decompose images о#(ег), i = \,...,n of basis vectors (e) 

by basis (f):

^= 1,
j = 1

From the coordinate columns of(e1),...,csf(e„) relative to basis (f) compose 

matrix of sizes mxn\

A'-
a,и

\ aml

aIn

a
(13.1)

mn J

It is called matrix o f linear mapping c/7 in bases (e) and (f) , or relative to 

bases (e) and (f). Matrix of mapping is also denoted by A , to emphasize its
(e),(f)

dependency on the chosen bases.

Matrix of mapping associates coordinates of image w = cd(x) and original v .

I f v  = (v1 ••• vn)Tis coordinate column o f v , and w = (w1 ••• wm)T is coordinate

column of w (i.e. x = v]t l +... + vnvn and w = w f  +... + wmfm), then

\ wmj

aи

\ am\

a Y v  ^U 1 n Vl

® m n  J  \ У  n J

w = Av. (13.2)

where A is matrix (13.1) of mapping d l .

To find matrix of mapping cd : V -^ W  it is necessary to make the following 

steps:



1) specify bases (e) = (el5...,e„) and (f) = (flv..,fOT) of spaces V and W;

2) find image cd(tf) of the first basis vector and decompose it by basis (f). 

Obtained coordinates are written to the first column of matrix (13.1) of mapping

;

3) find image cd(e2) of the second basis vector and decompose it by basis (f ) . 

Obtained coordinate are written to the second column of matrix (13.1) of mapping 

and etc. In the last column of matrix (13.1) we should write the coordinates of 

image c?f (еи) of the last basis vector.

Properties of Linear Mapping Matrices

For fixed bases of linear spaces:

1) matrix o f sum of linear mappings equals to the sum of their matrices;

2) matrix o f multiplication o f a matrix by a number equals to a product o f 

mapping matrix and the same number;

3) matrix o f an inverse mapping is inverse matrix o f the mapping;

4) matrix o f mapping composition C = cd °@ equals to the product o f mapping 

matrices: C = BA.

13.1.5. Kernel and Image of Linear Mapping

Kernel o f  linear mapping cd : V -» W is a set of such vectors v e V , that 

of(v) = ow, i.e. set of vectors from V, which are associated with zero vector of space 

W . Kernel of mapping o f : V —> W is denoted by:

Kerof = { v: v e  V,cd( \ )  = ow}.

Image o f linear mapping cd : V -» W is set of images cd(v) of all vectors v 

from У . Image of mapping o f : V —» W is denoted by I m ^  or cd(V ):

Im cd = cd (V) = { w : w = cd  (v), V v eV ).

Note, that symbol Im cd should be distinguished from hnz -  imaginary part

of a complex number.



Examples of Kernels and Images of Linear Mappings

1. Kernel of zero mapping 0 : V —» W is whole space V and image consists of 

the only zero vector, i.e. Ker <0 = V , Im 0 = { 0 W }.

2. Consider mapping аз:У - » Ж”, which associates every vector v of

n -dimensional linear space V its coordinate column v = (v, • • • vn)T relative to the

given basis e1,...,en. Kernel of this mapping is zero vector ov of space V, because it 

is the only vector, that has zero coordinate column as(ov ) = o e l " .  Image of

mapping ae equals to the whole space M”, since the mapping is surjective (every 

column of 1" is a coordinate column of some vector in space V).

3. Consider mapping proj- : Vr3 -» Ж, which associates every vector v of three-

dimensional space V3 of geometric vectors with algebraic value proj7(v) = (v, i ) of 

its orthogonal projection to the axis, which is formed by vector i , i.e. to abscissa axis 

v. Kernel of this mapping is set of vectors Lin( j , k ) ,  which are perpendicular to

vector i . The image is the whole set of real numbers Ж.

4. Consider mapping ©: Pn (Ж) —» Pn_x (Ж), which associates every polynomial

or order not greater than n with its derivative. Kernel of this mapping is set P0 (Ж) of 

zero-ordered polynomials and image is whole set Pn_x (Ж).

Properties of Kernel and Image of Linear Mappings

1. Kernel of any linear mapping : V - » W is a subspace: 

{0v }<K erc^ <1V.

2. Image of any linear mapping d l : У —» W is a subspace: Im < W .

Since kernel and image of linear mapping are linear subspaces (Properties 1 and 2), it 

is possible to speak of their dimensionalities.

Nullity o f linear mapping is dimensionality of its kernel: d = dim (Ker c^),

and rank o f linear mapping is dimensionality of its image: rg сЛ = r = dim (im су/  ).



3. Rank of linear mapping equals to the rank of its matrix (defined relative to 

any basis).

4. Linear mapping of : V -» W is injective if and only if Ker of = { ov } , in 

other words, when nullity of mapping equals to zero: d  = dim (Ker of ) = 0 .

5. Linear mapping o f : V -» W is surjective if and only if Im of = W , in other 

words, when mapping image rank equals to image space dimensionality: 

r = dim (Im o f) = dim W .

6. Linear mapping o f : V - » W is bijective (and invertible) if and only if 

Ker of = {0V} and Im of = W simultaneously.

7. Sum of kernel and image dimensionalities of any linear mapping 

of : V- > W equals to the dimensionality of originals:

dim (Ker of) + dim (im of) = dim V. (13.3)

8. Linear mapping o f : У —» W is bijective (and invertible) if and only if its 

matrix is invertible (determined for any basis). Invertible linear mappings are also 

called nonsingular (meaning non-singularity of its matrix).

13.2. LINEAR TRANSFORMATIONS (OPERATORS)

13.2.1. Definition and Examples of Linear Transformations

Linear transformation (linear operator) of linear space V is linear mapping 

di : У —» У of space У onto itself.

Since linear transformation is a particular case of linear mapping, all properties 

of linear mapping are applied to it (injectivity, surjectivity, bijectivity, invertibility, 

kernel, image, nullity and rank and other notions).

Matrix of linear transformation cA: V - >  V in basis ej,..., e„ of space V i s a

square matrix A, formed by coordinate columns of basis vector images 

cA(el) ,. . . ,of (en), which are found relative to basis e, ,...,ей.



Matrix of bijective linear transformation is invertible, i.e. nonsingular. 

Therefore, bijective (invertible) transformations are called nonsingular.

13.2.2. Matrices of Linear Transformation Relative to Different Bases

Let’s show the connection between matrices of linear transformation relative to 

different bases.

Let linear transformation c/7 : V —> V have in basis (e) = (elv..,e„) matrix A
(e)

and in basis (f) = ( W J  -  matrix A. I f  S is transition matrix from basis (e) to 

basis (f) then

A = S~l AS .  (13.4)
(f) (*)

This formula demonstrates, that matrices of linear transformation in different 

bases are similar (sect. 6.2). And vice versa, every pair of similar matrices are 

matrices of some linear transformations, which were found relative to different bases.

EXERCISES

1. Find kernel and image of the linear transformation »M3, which

matrix in standard basis of space M3 has the following matrix

"0 1 1^
A= 1 1 0

.-1  0 к
Determine, whether this transformation is injective, surjective, bijective, invertible.

A

2. Linear transformation oA: M2 —» Ж2 in basis al = 

^3 5Л

v2y
, a2 =

v3y
has matrix

v4

matrix В =

and linear transformation (В: Ж2 —» M2 in basis bx = 

^4 6̂ i

v l/
A  =f 4l

,2 ,
has

6 9
. Find matrix of transformation cA + J8 in basis bx,b.2 ■
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